

Brief Presentation Overview

- Atmosphere-Breathing Electric Propulsion (ABEP)
- Intake Principle of Operation and Designs
- Development and Test of the advanced RF Helicon Plasma Thruster

Research Questions

- 1. What are the main driving parameters and their ranges for designing an ABEP-based mission?
- 2. What is the principle of operation of an ABEP-intake and how can the (system) efficiency be maximized?
- 3. How to design an efficient electrodeless plasma thruster that operates on atmospheric propellant?
- 4. How can the more or less complex plasma physics-driven phenomena be approved i.e. how can we approve that our advanced Helicon is a Helicon?
- 5. What impact can application (e.g. EO or telecommunication), launcher and ABEP in general have referring to the platform design (i.e. the design of the satellite)?

Atmosphere-Breathing Electric Propulsion (ABEP)

- Orbit at low altitudes and use the residual atmosphere as propellant, no tank required
- Intake collects the residual atmosphere, electric thruster ionizes and accelerates it to produce thrust
- Applicable to any celestial body with atmosphere

RF Helicon-based Plasma Thruster

F. Romano, Y.-A. Chan, G. Herdrich, P.C.E. Roberts, et al. "RF Helicon-based Inductive Plasma Thruster (IPT) Design for an Atmosphere-Breathing Electric Propulsion system (ABEP)", Acta Astronautica 176: 476-483, November 2020, ISSN 0094-5765, DOI: 10.1016/j.actaastro.2020.07.008.

Very Low Earth Orbit (VLEO)

h < 450 km, aerodynamics not negligible

- Mostly Atomic Oxygen (AO) and N₂
- Atmospheric properties changes over time, location, solar activity, and altitude

Advantages vs LEO

- Less complex optics
- Reduced antenna size and power
- Use of standard components, less radiation
- Reduced collision risk
- Self End-of-Life satellite disposal

University of Stuttgart

Overview on RF Thrusters

Many designs of electrodeless thrusters have been proposed recently..

- A summary of helicon-type thrusters is shown in the table [1] below with respective KPI:
 - Specific impulse, Thrust efficiency, Thrust, Operational power
- Charactersitics motivating application of RF thrusters for ABEP
 - Quasineutral jet \rightarrow no neutralizer needed
 - Flexibility in terms of propellant (composition) and density
 - No life time problems referring to electrodes (no electrodes)
 - Significant potential for comparably higher thrust efficiencies (example: "air"-driven HET: 15%)

Prototype	I _{sp} (s)	η_{t} (%)	Thrust	$\eta_{\mathrm{m}}~(\%)$	Power	Reference
Mini helicon thruster experiment (mHTE)	1000-4000	18-20	10 mN	90	700–1100 W	[59]
Helicon plasma hydrazine combined micro (HPHCOM)	1200	13	1.5 mN	90	50 W	[85]
	422	13	0.5 mN		8 W	[86]
Permanent magnet expanding plasma (PMEP)	500	1	3 mN	<50	700 W	[87]
High power helicon thruster (HPHT)	4750 (H ₂)	_			30 kW	[88]
Helicon double layer thruster (HDLT)	280	$\mathbb{C}1$	1-2.8 mN		250-650 W	[89]
Permanent magnet helicon plasma thruster (PM-HPT)	2000	7.5	15 mN	_	2 kW	[90]

Literature review on RF Thrusters (2/4)

Tohoku University – Helicon Plasma Thruster (HPT) [2]

- · Developed helicon plasma source for high power electric propulsion
- Use of permanent magnets
- · Focus on high efficient device
- No ABEP application investigated

Thruster parameter	Value
Power	6000 W
Thrust	67 mN
Weight-specific impulse	3256 s
Thrust efficiency	17.8%
Propellant	Argon
Thruster length	350 mm
Plume potential	Quasi-neutral
Mass flow rate	2.1 mg/s

Australian National University – Helicon Double Layer Thruster (HDLT) [3]

- Developed new type of thruster -> HDLT
- Scalable in power and geometry
- · Focus on system simplicity

Thruster parameter	Value
Power	500 W
Exhaust velocity	15 km/s
Plasma density	10 ¹² cm ⁻³
Operational pressure	2·10 ⁻⁴ - 2·10 ⁻⁵
	mbar
Propellant	Xenon
Discharge channel length	310 mm
Plume potential	Quasi-neutral
Mass flow rate	Not provided

Literature review on RF Thrusters (3/4)

University Carlos III Madrid – Helicon Plasma Thruster (HPT) [4]

- · Held studies on helicon plasma thruster breadboard development
- Focus on increasing thruster's TRL
- Aim to provide complete EP system
- Target to LEO/MEO missions design foresees tanks
- Diagnostics (LP, FP, RPA) used for perfomance assessment

T4i – Magnetically Enhanced Thruster (MET) [5]

- Developed MET as part of REGULUS propulsion platfo Propellant
- Most advanced system wrt to TRL
- Support medium to large cubsats

Thruster parameter	Value
Power	450 W
Thrust	5.6 / 7.9 mN
Specific impulse	1120 / 790 s
Thrust efficiency	9.1%
Propellant	Xenon, Argon
Discharge channel length	125-150 mm
Plume potential	Quasi-neutral
Flow rate	2.5-20 sccm, Argon 5-50 sccm, xenon

BN Discharge

Chamber

AI Fra

Literature review on RF Thrusters (4/4)

University of Maryland – Superconducting Helicon Plasma Thruster (HPT) [6]

- Investigation on HPT incorporating superconducting magnets (SCM)
- Comparison with "conventional" HPT
- Better thrust efficiency
- · Lower plasma densities and thrust (also lsp)
- Ignition achieved at very low power (7W)

	00 000000000000000000000000000000000000		-	
66L		Keithley 3390 Waveform Generator	Thruster parameter	Value
1.80			Power	30 W
	- And	Amplifier Research 250W Amplifier	Thrust	0.2 mN
10.00	A Statching	March Seren Dr.	Specific impulse	220 s
		Power Supply	Thrust efficiency	40%
Adixen Turbo Pump		when the first	Propellant	Argon
			Discharge channel length	305 mm
eybold EcoDry M	and the second second second		Flow rate	3.1 sccm
tougning rump	0000000000000000000000000			

University of Washington – High Power Helicon (HPH) [7]

- Developed high power helicon devices
- Cluster of thrusters
- Increase of exhaust velocity of 60%

Thruster parameter	Value
RF charge voltage	262.5 V
Magnetic field	350 G
Plasma density	5-10 ¹⁸ m ⁻³
Exhaust velocity	18.3 km/s
Specific impulse	1800 s
Propellant	Argon
Mass flow rate	Not provided

Intake: Principle of Operation

- Free Molecular Flow → Design driven by gas-surface-interaction (GSI) properties
- Design based on in-house (verified) DSMC code PICLas
- Specular reflecting materials → Optics/Telescope-like design
- Diffuse reflecting materials → Molecular trap

GSI Maxwell Model

Flow Misalignment: for 5° Specular Intake: $\Delta \eta_c \sim 0\%$, Diffuse Intake: $\Delta \eta_c \sim 17\%$ for 10° Specular Intake: $\Delta \eta_c \sim 5\%$, Diffuse Intake: $\Delta \eta_c \sim 41\%$

F. Romano, J. Espinosa-Orozco, M. Pfeiffer, G. Herdrich, N.H. Crisp, P.C.E. Roberts, et al., "Intake design for an Atmosphere-Breathing Electric Propulsion System (ABEP)", Acta Astronautica 187: 225-235, October 2021, ISSN 0094-5765, DOI: 10.1016/j.actaastro.2021.06.033.

University of Stuttgart

Master Class, Final DISCOCERER GA Meeting – 8-10 Feb. 2022

System Analysis

Loop Link

Spacecraft's properties, ABEP performance (η_c , η_T), and atmospheric properties depending on the mission envelope: h, Lat., Long., duration (sol. act.), T/D required. Atmospheric Properties **ABEP** Performance Mission Envelope $\rho(h), n_i(h)$ **Spacecraft Properties** $\eta_c, \eta_T, A_f, A_{in},$ Orbit (Lat. Long.) $D(h), \dot{m}_{thr}(h), T/D$ Altitude h F10.7, Ap $\rho(h), n_i(h)$ $P_{ABEP}(h), c_e(h)$ Atmospheric Model ABEP System Analysis **NRLMSISE-00**

System Analysis Results

System Analysis

Aerodynamic Drag

$$D(h) = \frac{1}{2}\rho(h)v^2(h)C_DA_f$$

Collectible Mass Flow

$$\dot{m}_{thr}(h) = \rho(h) A_{in} v(h) \eta_c$$

ABEP Thrust

$$T(h) = \dot{m}_{thr}(h)c_{\rm e}(h)$$

Jet Power

$$P_{jet}(h) = \frac{1}{2} \dot{m}_{thr}(h) c_e^2(h)$$

By Equaling T(h) = D(h)

Along with the relation

$$P_{ABEP} = P_{jet}/\eta_T$$

Required ABEP Power

$$P_{ABEP} = \frac{1}{2} \rho(h) v^3(h) A_f^2 C_D^2 \frac{1}{A_{in} \eta_c}$$

Atmospheric Properties and Mission Envelope

Spacecraft Properties

ABEP Performance

System Analysis applied to a GOCE-like Satellite

GOCE Satellite Main Properties

$$A_f = 1.1 \text{ m}^2$$

 $C_D = 3.7$

 $P = 1.6 \, \text{kW}$

For the ABEP Performance

$\frac{\eta_c}{-}$	η_T
0.43, 0.46, 0.94	0.2

GOCE-like ABEP-based in VLEO

P_{ABEP} kW	PABEPhkWkm		$I_{sp} \times 10^3 { m s}$	С _D —
1.6 - 0.3	190 - 250	10 - 24	1.5 - 3.0	3.7

250

Experimental Activity with IPG6-S

Testing IPG6-S with applied magnetic field.

Effects of applied B-field

- Reduction of power oscillations, increase of absorbed power
- Hints to Helicon mode and/or significant inductivity change

F. Romano, G. Herdrich, T. Binder, A. Boxberger, C. Traub, S. Fasoulas, T. Schönherr, P. Roberts, et al., "Effects of applied magnetic field on IPG6-S, test-bed for an ABEP-based inductive plasma thruster (IPT)", Space Propulsion 2018, Seville, Spain, 14-18/05/2018, SP2018 00412.

Electric Thruster

- > Large I_{sp} \rightarrow efficient, low thrust, scalable
- > Conventional thrusters operating on N_2/O_2 :
 - > Erosion of accelerating grids, discharge channels
 - Need of a neutralizer
 - Atmosphere is not a uniform environment
 - > Variable pressure, composition, and density
- Electrodeless plasma thruster:
 - > No electrodes, no neutralizer, propellant variability

Thruster Design

The new electrodeless plasma thruster design started using HELIC and ADAMANT codes

- Maximize exhaust velocity → high ionization degree → helicon plasma
- Easy (re)-ignitions, $n_e > 1 \times 10^{17} m^{-3}$
- f > 27.12 MHz, applied B-field $B_0 = 30 70 mT \rightarrow$ Acquired 40.68 MHz RF Generator, solenoid
- Seek better antennae, RF circuit needs optimization

University of Stuttgart

Birdcage Antenna

- Created for Magnetic Resonance Imaging (MRI)
- Operates at resonance frequency \rightarrow Partially matched load: $X = 0 \Omega \rightarrow$ Electrical efficiency
- **Sinusoidal** distribution of the current around a cylinder -> Homogenous transversal lin. polarized B-field
- Field configuration → Drift velocity to ions and electrons along same direction
- Divergence of applied B-field at the exhaust \rightarrow Thrust

➔ Propulsion

RF Helicon-based Plasma Thruster (IPT)

RF Input

Faraday Shield

- 8 legs birdcage
- > Operating at f = 40.68 MHz

Propellant

Input

- Injector for fine tuning
- \triangleright $P_{in} < 1 \, kW$
- > XFdtd® software to extract required capacitance

Solenoid

Institute of Space Systems University of Stuttgart

RF Helicon-base Plasma Thruste

RF Inc

Faraday Shield

Propellant

Input

Solenoid

d capacitance

Simulation Results: Thruster Frequency Response

From Simulation to Experiment: Thruster Before Tuning

After Tuning: Network Analyzer Results

f is fine tuned, relative position of RF Input and Ground adjusted:

> $S_{11} = -47.3 \, \mathrm{dB}$ $Z = 50.18 + j0.39\Omega$ f = 40.68 MHz

Correct resonant mode, at the required f and matched: ready for testing!

Master Class, Final DISCOCERER GA Meeting - 8-10 Feb, 2022

Institute of Space Systems University of Stuttgart

First ignition on Argon!

Proof of Concept: Operation on Argon, Nitrogen, and Oxygen

Decreasing B-field

Argon: $\dot{m} = 1.2 \text{ mg/s}$ $P_f = 60 \text{ W}$

(a)
$$I_S = 10.07 \,\mathrm{A}, P_r = 1 - 6 \,\mathrm{W}$$

(b) $I_S = 6.7 \,\text{A}, P_r = 10 - 17 \,\text{W}$

University of Stuttgart

(c) $I_S = 6.5 \text{ A}, P_r = 17 - 27 \text{ W}$

(d) $I_S = 6.3 \text{ A}, P_r = 11 - 28 \text{ W}$

1/5 s, Solenoid at 35 mm.

3.18: N₂, $P_f = 60$ W, $\dot{m} = 0.426$ mg s⁻¹, Focal length 50 mm f/4 Exposure time 1/5 s, Solenoid at 35 mm.

The Tested Limits!

Argon

 $\dot{m} = 0.4 \text{ mg/s}$ $P_f = 10 \text{ W}$ $P_r = 10 \text{ W}$ $I_S = 6.7 \text{ A}$
$$\begin{split} \dot{m} &= 0.6 \text{ mg/s} \\ P_{f} &= 300 \text{ W} \\ P_{r} &= 30 - 50 \text{ W} \\ I_{S} &= 10.07 \text{ A} \end{split}$$

Helicon Waves (HW)

- Low frequency whistler waves, right-hand polarized (m = +1), confined in a cylinder
- HW increases the efficiency of the discharge → Larger plasma density compared to "inductive" plasma discharges for a given input power
- Use of a magnetic inductive or B-dot probe to detect the rotating alternating magnetic field of the HW within the plasma plume

HW: E field pattern m = +1, RH

F. Chen, Helicon discharges and sources: a review, Plasma Sources Science and Technology 24 (1) (2015) 014001. doi:10.1088/0963-0252/24/1/014001.

B-dot Probe

- A 3-axes B-dot probe is designed
- Measure B-field flux along x, y, z k
- Aiming to see the rotating alternat

B-dot Probe Assembly

6 x 50 Ω RG 178 Inside

Х

University of Stuttgart

Master Class, F

Measurement goal:

- ExB drift verification
- Determination of thrust efficiency
- Determination of weight-specific impulse
- Characterisation of momentum distribution in the plume

Momentum flux probe principle:

- Accelerated particles are absorbed by a baffle plate
- Particle momentum transferred to probe
- Resulting displacement measured via an LED sensor
- Frictionless rotation via pivot bearings in the pendulums centre of gravity
- Calibration with electrostatic comb
- Moveable setup

Comparison of pendulum mechanics:

- Expected force: ≤ 1 mN
- Influence of gravity critical

	Hanging Pendulum	Inverted Parallelogram Pendulum	Inverted Pendulum	Elastic Beam	Torsional Pendulum
Pros	 Simple principle Gravity as stabilizing force 	 Probably point of attack less relevant no deflection of plate 	Simple principle	 No bearings Less structure 	 Gravity independent Allows measurement close to thruster exit
Cons	 Long arm necessary →facility issues Alignment Plate deflection Affected by gravity 	 Complex structure Requires a min. of 6 bearings > restoring force high Affected by gravity 	 Alignment Plate deflection Affected by gravity 	 Long arm necessary →facility issues Alignment 	 Alignment Plate deflection

Final design

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 737183.

D

Final design

- Graphite baffle plate
- Alumina target plate for sensor
- Tilt control
- Copper counterweight also functions as Eddy current damper
- Electrostatic comb for calibration
- Shield to prevent particle influence
- Shutter mechanism in front of baffle plate

Calibration

- Correlation between measured displacement and applied force
- Electrostatic force between fins
- Non-intrusive application of force
- Accurate application of very low forces possible

Spacecraft Platform Considerations

Mission & Payload Envelope (ESA)

Orbit

- 150 to 250 km
- SSO, goal: 10:00 or 12:00 LTAN

Payload

- Optical payload, 390 mm x 270 mm x 270 mm (I x w x h) on nadir side
- Telecom payload, nadir side, shape & size uncritical

System Assumptions / Constraints

- Outer spacecraft surfaces made of diffusely reflecting material
- Maximal viable length of spacecraft (launcher): approx. 4 m

Spacecraft Platform Considerations

Considered ABEP Components: IRS IPT & diffuse or specular intake

- Thruster efficiency: 0.2
- Diffuse intake efficiency: 0.46
- Specular intake efficiency: 0.94

ABEP System Constraints

- Realistic max. I_{SP}: approx. 2000 s
- Max. specular intake diam. to maintain length of 3 m: 0.5 m

Spacecraft Platform Considerations

Considered Options

- Payload requires body width of ca. 85 cm
 - with specular intake $\frac{A_{intake}}{A_{frontal}} \approx 0.59$
 - with diffuse intake $\frac{A_{intake}}{A_{frontal}} \approx 0.95$

Conclusions

- I_{SP} requirement of flat body significantly lower (C_D is slightly higher, but particularly η_c is much higher)
- Required ABEP power of flat body significantly lower (again, penalty of slightly higher $\rm C_D$ compensated by much higher $\rm \eta_c$

• Specular intake with high $A_{intake}/A_{frontal} (\approx 0.9)$ possible \rightarrow specular intake

$$P_{ABEP} = \frac{1}{8}\rho(h)v^{3}(h) A_{frontal}^{2}C_{D}^{2} \frac{1}{A_{intak}\eta_{c}\eta_{T}}$$

Conclusions 1

- Literature assessment of both
 - ABEP R&D as well as
 - R&D in the field of electrode-less RF thrusters
- Main ABEP-mission parameter investigated: ABEP efficiencies, variability of atmospheric properties
- Investigated ABEP-intakes and developed designs
- IPG6-S experiments
 - Potential evidence of Helicon mode
 - Implementation support for needed measurement techniques for later designed IPT
- System and mission analyses to assess
 - Feasibility and corresponding sensitivity scenarios
 - Data base for operational parameters for designed intakes as well as IPT (e.g. mass flow rates)
 University of Stuttgart
 Master Class, Final DISCOCERER GA Meeting 8-10 Feb. 2022
 46

Conclusions 2

•

- New plasma thruster designed and tested based on a cylindrical birdcage antenna
 - Low operation power requirement $\rightarrow P_{in} \sim 60 W$, tuned and matched load, shielded
 - <u>Contact-less</u> → Propellant flexibility in composition and density, minimized erosion
 - <u>Quasi-neutral plasma exhaust</u> → Charge-independent drift velocity, no neutralizer required
 - <u>Proof of concept:</u> tested on Ar, N₂, O₂ and comparable ABEP particle flows
- Designed and integrated a magnetic inductive 3-axes B-dot probe for HW verification
- Designed a torsional thrust balance to assess thruster relevant parameters
- Assessment of advanced and alternative ABEP-based mission scenarios (not shown here)

Beyond DISCOVERER

• Design requirements in ESA project fosters alternative design approaches

University of Stuttgart

Master Class, Final DISCOCERER GA Meeting – 8-10 Feb. 2022

Outlook 1 (DISCOVERER)

- Conclude B-dot probe calibration and perform tests for HW verification
- Extraction of thruster impedance during test for precise power measurement

Outlook 2 (beyond DISCOVERER)

- Characterize by RF compensated plasma diagnostics: LP and FP probe at first, RPA and OES later
- Design the thruster for vacuum operation: perform direct thrust measurements, increase of TRL

Thank you for Listening!

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No. 737183. This reflects only the author's view and the European Commission is not responsible for any use that may be made of the information it contains.

University of Stuttgart

References: Literature on Electrode-less RF Thrusters

[1] S. N. Bathgate, M. M. M. Bilek and D. R. McKenzie, "Electrodeless plasma thrusters for spacecraft: a review", Plasma Sci. Technol. 19 (2017) 083001, <u>https://doi.org/10.1088/2058-6272/aa71fe</u>.

[2] Takahashi, K., Lafleur, T., Charles, C., Alexander, P., Boswell, R. W., Perren, M., Laine, R., Pottinger, S., Lappas, V., Harle, T., and Lamprou, D., "Direct thrust measurement of a permanent magnet helicon double layer thruster," Appl. Phys. Lett., vol. 98, no. 14, p. 141503, 2011.

[3] C. Charles, R.W. Boswell, P. Alexander, C. Costa, O. Sutherland, "Helicon Double Layer Thruster", 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Sacramento, California, 9 - 12 July 2006.

[4] M. Ruiz, V. Gómez, P. Fajardo, J. Navarro, R. Albertoni, G. Dickeli, A. Vinci, S. Mazouffre, N. Hildebrand, "The HIPATIA project's initial development stages: setting the basis to bring the Helicon Plasma Thruster and its associated technologies to intermediate-high TRLs", 71st International Astronautical Congress (IAC), October 2020.

[5] M. Manente, F. Trezzolani, M. Magarotto, E. Fantino, A. Selmo, N. Bellomo, E. Toson, D. Pavarin, "REGULUS: A propulsion platform to boost small satellite missions", Acta Astronautica 157 (2019) 241–249.

Magnetic Nozzle

RF Helicon-based Plasma Thruster Concept

System Analysis for a GOCE-like Satellite

Effect of Misalignment on Intake Performance

Intake	η _c %	Δη _{c,β=5} ο %	Δη _{c,β=10} ο %	Δη _{c,β=15} ο %
Diffuse	45.8	-17	-41	-67
Specular	94.3	~0	-5	-8

Design Procedure

Electric Circuit

System Analysis

System Analysis

Literature max. helicon thruster efficiency

 $\eta_T = 20\% [1]$

[1] K. Takahashi, Helicontype radiofrequency plasma thrusters and magnetic plasma nozzles, Rev. Mod. Plasma Phys. 3 (1) (2019) 3.

University of Stuttgart

