Agenda

• Introduction
• Scilab
• Xcos
• Custom Toolbox
• Demo
Introduction

- Numerical computation tool
- Graphical design (Xcos)
- Extendable
 - Toolbox
 - Integration with external tools
 - Programming
- Open source (GPL)

Available at http://www.scilab.org
Introduction: Integration with other tools and hardware

• Extend Scilab with other languages:
 – Java, Python, Tcl Tk, Fortran or C, C++
• Use Scilab from different languages:
 – Java, Python or C, C++
• Integration with other programs:
 – Excel
 – Labview
 – OpenFoam
 – Etc.

More information in https://wiki.scilab.org/Interoperability
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 737183.
Scilab: basic information

• Basic data element: **Matrix**

 – everything is a matrix. All real, complex, Boolean, integer, string, and polynomial variables are matrices.

• Variables names case sensitive and only 24 first characters are considered

• Protected variables: %i, %pi, etc.

• High-level interpreted language with variables, flow, functions, primitives.

• High-level functions for 2-D and 3-D data visualization
Scilab: Useful commands

- Help command
 --> help
 --> help <name_of_command>
 --> apropos(keyword)

- Workspace commands:
 --> clc: clear screen
 --> what: show all the primitives
 --> who/whos: show all the variables (with -name show variables starting with <>)
 --> clear: delete all non protected variables
Scilab: Create functions

• Format:

```scilab
function <lhs_arguments>=<function_name><rhs_arguments>
...
Endfunction
```

• Create the function with the editor
 - Save as *.sci file with the name of the function

• Load the function in the command line
 - exec filename.sci

• Genlib to build library from functions (sci files) in given directory
Scripting

• For long code scripts can be used:
 – Files with extension *.sce
 – Load: exec (‘filename.sce’)
 – Can include definition of functions

• Edit with the editor (applications/SciNotes):
 – // for comments
 – F5 to evaluate the script
Load/save data

Variables (environment) *sod

- Save and load commands
- Menu File/Save environment or Load environment

Graphics *.scg

- Any graphic figure can be saved:
 - save() through its identifier as a variable
 - xsave()
 - With figure's menu File/Save
- Load file *.scg: load(..) or xload()
- Several figures may be saved in the same file. Each restored figure gets a new incremented #id, so usually not the original one.
Scilab: Matlab

- 'Comparisons are odious'
- https://wiki.scilab.org/MatlabToScilab
- Conversor available
Scilab: ATOMS

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 737183.
CelestLab/CelestLabX

- Atoms/Domain-specific/Celestlab
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 737183.
Xcos: Palette

- **Standard Palettes and Blocks**
 - Signal processing and signal routing
 - Thermo-hydraulic blocks
 - Mathematical operations, matrix, integer
 - Discrete and continuous system blocks
 - Electrical
 - User defined blocks
 - Annotations: text, LaTeX/MathML
 - Lookup tables
 - Event handling
 - Sinks and sources
 - Port and subsystem
Model building and edition

- Blocks selection from existing palettes (drag and drop)
- Define inputs and connect blocks through lines
- Superblocks management (Sub-diagram embedded in a single superblock for model reuse and simplification)
- All Scilab data types available for signal definition

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 737183.
Model customization

• Simulation parameters definition (solver)

• Signals and blocks parameters adaptation
Example: AntiWindUp PID controller

Source: https://www.scilab.org/pid-anti-windup-schemes (Dew Toodhinda, Scilab Ninja)
Example: AntiWindUp PID controller
Code generation

Create Superblock

Generate code from superblock
Xcos: Custom blocks

• External code (C, C++, Fortran)
• Xcos models (generate code)
• Scilab code
Xcos: Custom blocks

- Install MinGw and its toolbox to be able to compile code (C/C++, Fortran)
- Atoms/Windows Tools/MinGw toolbox
Xcos: Custom Toolbox

- Skeleton structure (contribs in Scilab source code):
 - Etc
 - Help
 - Images
 - Macros: Block definition and Scilab code,
 - Src: Source code.
 - Builder.sce: compilation script.
 - Loader.sce: load toolbox.
Xcos: Custom Toolbox

<table>
<thead>
<tr>
<th>Altitude</th>
<th>Declination</th>
<th>Inclination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latitude</td>
<td>North</td>
<td>East</td>
</tr>
<tr>
<td>Longitude</td>
<td>Down</td>
<td>Total</td>
</tr>
<tr>
<td>Year</td>
<td>secvarD</td>
<td>secvarL</td>
</tr>
<tr>
<td>Months</td>
<td>secvarH</td>
<td></td>
</tr>
<tr>
<td>Day of month</td>
<td>secvarNorth</td>
<td>secvarEast</td>
</tr>
<tr>
<td>Model</td>
<td>secvarDown</td>
<td>secvarTotal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Altitude</th>
<th>He density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latitude</td>
<td>O density</td>
</tr>
<tr>
<td>Longitude</td>
<td>N2 density</td>
</tr>
<tr>
<td>Year</td>
<td>O2 density</td>
</tr>
<tr>
<td>Day</td>
<td>Ar density</td>
</tr>
<tr>
<td>Seconds</td>
<td>H density</td>
</tr>
<tr>
<td>F10.7 av.</td>
<td>N density</td>
</tr>
<tr>
<td>F10.7</td>
<td>Anomalous O density</td>
</tr>
<tr>
<td>AP (daily)</td>
<td>Exospheric temp</td>
</tr>
<tr>
<td></td>
<td>Temp. at alt.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Altitude</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latitude</td>
<td>Exospheric temp</td>
</tr>
<tr>
<td>Longitude</td>
<td>Atomic H</td>
</tr>
<tr>
<td>Year</td>
<td>Helium</td>
</tr>
<tr>
<td>Month</td>
<td>Atomic O</td>
</tr>
<tr>
<td>Day</td>
<td>Molecular N</td>
</tr>
<tr>
<td>Hour</td>
<td>Molecular O</td>
</tr>
<tr>
<td>Minute</td>
<td>Atomic N</td>
</tr>
<tr>
<td>Second</td>
<td>Density</td>
</tr>
<tr>
<td></td>
<td>Dens. unc.</td>
</tr>
<tr>
<td></td>
<td>Mean mld mass</td>
</tr>
</tbody>
</table>

Meridional wind

Zonal wind

MAGNETIC TORQUE

GRAVITY TORQUE

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 737183.
Links

<table>
<thead>
<tr>
<th>Links of interest</th>
<th>Description</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Download</td>
<td></td>
<td>https://www.scilab.org/download/6.0.2</td>
</tr>
<tr>
<td>Tutorials</td>
<td></td>
<td>https://www.scilab.org/tutorials</td>
</tr>
<tr>
<td>Wiki</td>
<td></td>
<td>https://wiki.scilab.org/</td>
</tr>
<tr>
<td>Mail lists</td>
<td></td>
<td>https://www.scilab.org/about/community/mailing-lists</td>
</tr>
<tr>
<td>Forum</td>
<td></td>
<td>https://scilab.in/forum</td>
</tr>
<tr>
<td>Books</td>
<td></td>
<td>https://www.scilab.org/about/community/books</td>
</tr>
<tr>
<td>Control Eng.</td>
<td></td>
<td>https://scilabdotninja.wordpress.com/scilab-control-engineering-basics/</td>
</tr>
</tbody>
</table>
Demo
System Modelling and Simulation with SCILAB

David Gonzalez – Valentín Cañas
DEIMOS

Brussels, 28 November 2019