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Research at MSSL

• Department of Space and Climate Physics, University College London

• Research groups supported by specialist engineers conduct our 

scientific research:

– Astrophysics

– Climate Physics

– Magnetospheric Physics

– Planetary Science

– Solar and Stellar Physics

– Theory

– In-situ Detection Systems

– Photon Detection Systems

– Imaging

– Cryogenic Physics
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In-situ Plasma Instrumentation

• Strong plasma instrumentation heritage
– Planetary environments: Cassini, Mars and 

Venus Express (built by SWRI), Mars 96 
(launcher failed), AMPTE-UKS

– Magnetospheric missions: Cluster, Double Star, 
Polar, CRRES, STRV, QB50

– Cometary studies: Giotto

– Technology Demonstration: TechDemoSat

• Top-hats, with enhanced capabilities
– Solar Orbiter, SMILE (built by NSSC, China)

• Highly miniaturised particle sensors
– DISCOVERER, CIRCE
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Cluster PEACE
Cassini 

ELS

Reduced scale 

prototype

FONEMA on 

MARS96

Mars Express in the 

calibration chamber

Improved Plasma Analyser

with miniaturised prototype Solar Orbiter EAS
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Instrument Miniaturisation 

• Driven by CubeSat and Space Weather

– Horses for courses

• Generic technology development

– Charged Particle Optics

– Electronics miniaturisation – HV, readout, digital

– Detection systems – combined e-ion

• Alternative geometries to top-hats

– Cylindrical, Bessel box

• Technology demonstration 

– UK TechDemoSat, QB50 precursor

EJSM 

prototype 

testbed

High temporal resolution 

proof-of-concept 

analyser

TechDemoSat ChaPS

instrument and CAD 

model

Silicon wafer analyser

Improved Plasma 

Analyser

EAS/MMS prototype

CubeSa

t

Ion and Neutral Mass 

Spectrometer for QB50
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• Typical elements of a space instrument

Information 

conditioning

Detection and 

signal processing

Data 

transmission and 

reception
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• Typical elements of a space instrument

• Information conditioning: Collectors (telescopes), 

filters, analysers, apertures or collimators

• Combinations of above

Information 

conditioning

Detection and 

signal processing

Data 

transmission and 

reception

Information 

conditioning
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• Typical elements of a space instrument

Information 

conditioning

Detection and 

signal processing

Data 

transmission and 

reception

Information 

conditioning

Instrument response 

parameters

Overview
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Requirements Definition
Plasma Environments –Ionosphere/Exosphere

http://www.nar.ucar.edu/2010/lar/hao/upper-

atmosphere-and-ionosphere-community-models.html

http://www.physics.usyd.edu.au/~cairns/teaching/lectur

e16/node2.html

DISCOVERER Masterclass, Brussels, 28th November, 2019

http://www.nar.ucar.edu/2010/lar/hao/upper-atmosphere-and-ionosphere-community-models.html
http://www.physics.usyd.edu.au/~cairns/teaching/lecture16/node2.html


MSSL, Department of Space and Climate Physics

Requirements definition

• Science, Engineering drivers

• Orbit

– Measurable quantities

• e.g. range of flux, particle types

– Environment

• In-situ environment - Radiation, thermal

• Launch environment - vibration, 

• Measurement aims

– Science focus

– Monitoring vs science

– Discovery vs further scientific investigiations
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Measureable parameters – How?

• At any instant, instrument samples fraction of total 

parameter space. Key parameters sampled 

– Area 

– Angular range

– Time variability

• Measurement requirements drive total parameter 

space to be covered. 

– E.g., solar wind ions vs solar wind electrons  
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In-situ Plasma Measurements

• Design an In-situ Instrument

– Requirement Definition, Geometries and Fields

• In-situ Measurement Techniques 

– What and How with Examples

• Instrument Sub-systems: Brief Introduction

– Plasma Detectors, Electronics

• Instrument Acceptance Parameters

– Extracting the answers
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• E = 1/2*mv2

• Determine two quantities from amongst the three 
above

Electric field force – qE

Magnetic field force – q vxB

Requirements driven by mission science. Not all 
quantities are required to be measured

• Analysers:
– Electrostatic

– Magnetic 

– Combinations

In-situ instrumentation - How
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Electrostatic Analysers

Two main types

• Integrating

• Differential
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Electrostatic Analysers

• Integrating

– RPA

• Retarding potential 

analyser

– Gridded Faraday cup

– Langmuir probes

• Energy cut-off proportional to 

applied voltage

• Sweeping voltage samples 

full energy distribution

• Various geometries

– Planar, cylindrical, spherical, 

segmented

• Relatively simple instruments

• Needs high voltages

• Limited detail

• Affected by spacecraft effects0V HV

i
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Example

• Rosetta langmuir probe
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Electrostatic Analysers

• Field perpendicular to 

particle velocity v

– Motion in x

– Motion in y

e-

ions

+HV

0V

• Integrating

– RPA

• Differential

– Planar
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Electrostatic Analysers

• Integrating

– RPA

• Differential

– Planar

• Field perpendicular to 
particle velocity v
– Motion in x

– Motion in y

• y=(1/4)*(q/E)*(V/d)*x2

• y a x2

– Parabolic path

• y a 1/(E/q)
– Provides energy dispersion

• Position sensitive detector

e-

ions

+HV

0V
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Electrostatic Analysers

• Integrating

– RPA

• Differential

– Planar

• Low voltage requirement

• Simultaneous electron and 
ion detection possible

• Dispersion is non-linear

• Used on FONEMA along 
with magnetic field 
dispersion

e-

ions

+HV

0V
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Electrostatic Analysers

• Integrating

– RPA

• Differential

– Planar

– Spherical

• Radial field perpendicular 

to particle motion

det

r2

r1
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Electrostatic Analysers

• Integrating

– RPA

• Differential

– Planar

– Spherical

• Radial field perpendicular 

to particle motion

• Centripetal force mv2/r

• E/q = DV*r0/2Dr

– r0 = (r1+r2)/2

– Dr = r2-r1

• E/q = k*DV

• Sweep V to obtain energy 

distribution

• r0/2Dr - k-factor
det
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Electrostatic Analysers

• Integrating

– RPA

• Differential

– Planar

– Spherical

Various geometries

• Quadrispheric

det

DISCOVERER Masterclass, Brussels, 28th November, 2019



MSSL, Department of Space and Climate Physics

Electrostatic Analysers

• Integrating

– RPA

• Differential

– Planar

– Spherical

• Quadrispheric

• Hemispheric

d
e

t
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Electrostatic Analysers

• Integrating

– RPA

• Differential

– Planar

– Spherical

• Quadrispheric

• Hemispheric

• Tri-quadrispheric

det
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Giotto Fast Ion Sensor: 

Tri-quadrispheric
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Electrostatic Analysers

• Integrating

– RPA

• Differential

– Planar

– Spherical

• Quadrispheric

• Hemispheric

• Tri-quadrispheric

• Top hat or Symmetric 

quadrispheric

– Visit in detail in next 

section

+HV sweep

MCP MCP
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Top hats: Symmetric quadri-spheric

Cluster 

PEACECassini 

ELS

Reduced scale 

Prototype

DISCOVERER Masterclass, Brussels, 28th November, 2019



MSSL, Department of Space and Climate Physics

Electrostatic Analysers

• Integrating

– RPA

• Differential

– Planar

– Spherical (k-factor)

– Cylindrical, toroid

• Cylindrical: e.g. INMS 

on QB50, discussed 

later

• Toroid: e.g. TIMAS 

instrument on the Polar 

satellite discussed later
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Electrostatic Analysers

• Acquiring an energy distribution

– Voltages stepped to cover the 

desired range

• E.g., k-factor 10

– Data acquired by the detector for 

desired time period at each step

• Sampling statistics vs temporal 

resolution

• Spacecraft motion: temporal and 

spatial resolution
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Electrostatic 

Electrostatic Aperture

Deflection Plates

+ HV+ HV

Hemispheric

Analyser system

Electrostatic Aperture

Deflection Plates

Axis of rotational 

symmetry

+ HV+ HV

e

0V

Detector 

(e.g. MCP, CEM)

+ HV

Electron 

Trajectory

Variable GF system

Electrostatic 

Electrostatic Aperture

Deflection Plates

+ HV+ HV

Hemispheric

Analyser system

Electrostatic Aperture

Deflection Plates

Axis of rotational 

symmetry

+ HV+ HV

e
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Detector 
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Electron 

Trajectory

Variable GF system



MSSL, Department of Space and Climate Physics

Electrostatic Analysers

DISCOVERER Masterclass, Brussels, 28th November, 2019Ground Calibration Performance
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Micro-Channel Plates

• Micro-Channel Plates (MCPs) and Channel 

Electron Multipliers (CEM)

• Typical CEM gain 

– 106 – 108 e

– Independent of incident energy

• Signal read out by a charge 

sensitive preamplifier and 

leading edge discriminator

• Counts acquired for fixed 

acquisition time
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In-situ Plasma Measurements

• Design an In-situ Instrument

– Requirement Definition, Geometries and Fields

• In-situ Measurement Techniques 

– What and How with Examples

• Instrument Sub-systems: Brief Introduction

– Plasma Detectors, Electronics

• Instrument Acceptance Parameters

– Extracting the answers
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Near-Earth environment

• Near Earth

• No Angular 

information

DISCOVERER Masterclass, Brussels, 28th November, 2019



MSSL, Department of Space and Climate Physics

QB50 INMS: Cylindrical Analyser

• Ion and Neutral Mass Spectrometer

• Measure density of dominant species 

– O, O2, N2, NO

• Spacecraft ram velocity for mass identification

• Cylindrical electrostatic analyser
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QB50 INMS: Cylindrical Analyser

• Ions and neutral particles 

pass through the aperture

• Ion mode: Ion Filter and 

Ionizer off

• Neutral mode: Ion Filter and 

Ionizer on

• Analyser selects energy

• Detector counts number of 

arriving particles
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QB50 INMS: Cylindrical Analyser

• Mass identification
– E = 0.5mv2

– Energy from Analyser

– Velocity from orbital 

dynamics

– Energy resolution is 

critical – discussed in 

next lecture

– Why can’t this 

technique be used all 

the time for mass 

identification?
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Data from Phoenix (Taiwan)

• Satellite in Y-Thomson spin

– Particles enter aperture when 

instrument faces spacecraft 

ram direction measured only 

• Data from 16th January 2018

– Instrument set for O+

– X-axis – Voltage (Energy)

– Y-axis - Time
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QB50 CubeSats from ISS, 

2017

CIRCE and DISCOVERER 

Launches in 2020 
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Velocity measurement

• AtOx in LEO ~ 5eV, due to spacecraft ram velocity

• 40 m/s  0.05 eV dKe for AtOx in LEO

• Instrument energy resolution 10%

– FWHM ≈ 0.5 eV

• Required resolution <1%

• Measure velocity instead

– Time-of-flight technique
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Time-of-flight

DISCOVERER Masterclass, Brussels, 28th November, 2019

• Electrostatic gating technique

– Incoming AtOx +ve ion ~5 eV

– Positive 10V on gate electrode

– 0V “window” opened for m x 12.5ns

– Build histogram for n x 200 ns

Gate electrode

Energy 36 mm TOF (ns) dt (ns)

3.5 5557.29

5 4649.56 907.72

8 3675.80 973.76

4.4 4956.45 306.88

5.6 4393.42 256.13
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DISCOVERER 

• INMS for SOAR

– Satellite for Orbital Aerodynamics Research

– Time-of-flight

– In-flight velocity measurement

• Needs high resolution position knowledge
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QB50 design DISCOVERER design

DISCOVERER – ROAR and SOAR units
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Flow Characterisation Hardware

ROAR1 Front end ROAR1 Digital

SOAR EM
ROAR2 

integrated unit
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Time-of-flight and in-flight data

DISCOVERER Masterclass, Brussels, 28th November, 2019

Energy

Velocity 

(km/s) dv TOF (ns) dt (ns)

3.5 6.48 5557.29

5 7.74 1.34 4649.56 907.72

8 9.79 2.04 3675.80 973.76

4.4 7.26 4956.45 306.88

5.6 8.19 4393.42 256.13

Typical in-flight energy spectrum from QB50 INMS
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Sources of errors

• Spacecraft pointing 

knowledge

• Instrument resolutions

• Width of gating window

– 12.5 ns  ~20 m/s 

– DISCOVERER measurement 

goal - 250 m/s

• Detection efficiency

• Ionization efficiency

DISCOVERER Masterclass, Brussels, 28th November, 2019

Somewhere in the TOF/Energy spectrogram is plasma temperature 

and velocity
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• E = 1mv2

• Analysers:

– Electrostatic: energy, angle (Θ,Φ)

• Sufficient for electron and some ion 

measurements

• Driven by mission science

• For ions, may need species identification

– Usually done by measuring velocity v

In-situ instrumentation

2
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• Techniques for species identification

– Energy analysis followed by

• Velocity selection

• Mass selection

• Time of flight – velocity measurement

• Former two use magnetic field

– E x B – Wien filter

– E // B

– E followed by B

In-situ instrumentation
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Species identification - ExB

• Velocity selection using a 

Wien filter. 

• E x B field

– qE – Electric field 

– q (v x B) – magnetic field

– If qE = q(v x B) or v = E/B
• Forces are balanced

• Particle trajectory unaffected

• Permanent magnet 

– B is known

• v proportional to E or applied 

voltage

• Wein filter followed by energy 

analyser to achieve m/q 

identification
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• Time-of-flight (TOF)

• e.g., Giotto 

Implanted Ion 

Sensor 

• Electrostatic 

analyser -Energy 

• TOF - velocity

Species identification - TOF
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Giotto Implanted Ion Sensor
TOF section

• Time of flight technique

– Record the time a particle 
takes to “fly” through a 
known length

– Passage of particle through 
a material emits electrons

• Carbon foils

• Silicon detectors

– Two detectors provide fast 
signals to start and stop a 
time-to-amplitude converter

– Charge a capacitor or start 
and stop a counter
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Species Identification – E//B

• Thompson parabolas

• Each curve is energy 

dispersion of a different 

mass/q

e.g., Mars 96 mission
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FONEMA instrument
Hyperbolic electrostatic mirror 

for increased angular coverage

Position sensitive detector 

at image planeDISCOVERER Masterclass, Brussels, 28th November, 2019
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FONEMA

Six position sensitive detectors 

around the “focal image plane”
DISCOVERER Masterclass, Brussels, 28th November, 2019
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FONEMA
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TIMAS
• Toroidal Imaging Mass-Angle Spectrograph

• POLAR mission
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Neutral particles

• Giotto NMS

• Describe the 

different 

components
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Neutral particles
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Recapitulate

• In-situ instrumentation

– Analysers

• Electrostatic

• Species identification

– TOF – velocity measurement

– Velocity selection

– Mass selection

• Magnetic

• Combinations 

– Neutral Particle instrument
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Recapitulate

• In-situ instrumentation

– Principle of operation

• Energy analysis

• Mass identification

– E-M techniques

– TOF techniques

– Examples

• Cylindrical/Top Hat with additional electrodes – Energy analysis

– INMS, Top-hat 

• GIOTTO TOF analyser – Mass identification

• FONEMA – Thompson parabola – Mass identification
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