Mullard Space Science Laboratory Department of Space and Climate Physics

Mass spectrometry for VLEO and DISCOVERER

Dhiren Kataria d.kataria@ucl.ac.uk

Mullard Space Science Laboratory Dept. of Space and Climate Physics

Research at MSSL

- Department of Space and Climate Physics, University College London
- Research groups supported by specialist engineers conduct our scientific research:
 - Astrophysics
 - Climate Physics
 - Magnetospheric Physics
 - Planetary Science
 - Solar and Stellar Physics
 - Theory
 - In-situ Detection Systems
 - Photon Detection Systems
 - Imaging
 - Cryogenic Physics

In-situ Plasma Instrumentation

- Strong plasma instrumentation heritage
 - Planetary environments: Cassini, Mars and Venus Express (built by SWRI), Mars 96 (launcher failed), AMPTE-UKS
 - Magnetospheric missions: Cluster, Double Star, Polar, CRRES, STRV, QB50
 - Cometary studies: Giotto
 - Technology Demonstration: TechDemoSat
- Top-hats, with enhanced capabilities
 - Solar Orbiter, SMILE (built by NSSC, China)
- Highly miniaturised particle sensors
 - DISCOVERER, CIRCE

Improved Plasma Analyser with miniaturised prototype

DISCOVERER Masterclass, Brussels, 28th November, 2019

Mars Express in the calibration chamber

Instrument Miniaturisation

- Driven by CubeSat and Space Weather
 - Horses for courses
- Generic technology development
 - **Charged Particle Optics**
 - Electronics miniaturisation HV, readout, digital
 - Detection systems combined e-ion
- Alternative geometries to top-hats
 - Cylindrical, Bessel box
- Technology demonstration
 - UK TechDemoSat, QB50 precursor

Ion and Neutral Mass Spectrometer for QB50

High temporal resolution proof-of-concept analyser

Silicon wafer analyser

Overview

• Typical elements of a space instrument

Overview

• Typical elements of a space instrument

- Information conditioning: Collectors (telescopes), filters, analysers, apertures or collimators
- Combinations of above

Overview

• Typical elements of a space instrument

Requirements Definition Plasma Environments -lonosphere/Exosphere

Requirements definition

- Science, Engineering drivers
- Orbit
 - Measurable quantities
 - e.g. range of flux, particle types
 - Environment
 - In-situ environment Radiation, thermal
 - Launch environment vibration,
- Measurement aims
 - Science focus
 - Monitoring vs science
 - Discovery vs further scientific investigiations

Measureable parameters – How?

- At any instant, instrument samples fraction of total parameter space. Key parameters sampled
 - Area
 - Angular range
 - Time variability
- Measurement requirements drive total parameter space to be covered.
 - E.g., solar wind ions vs solar wind electrons

In-situ Plasma Measurements

• Design an In-situ Instrument

- Requirement Definition, Geometries and Fields
- In-situ Measurement Techniques
 What and How with Examples
- Instrument Sub-systems: Brief Introduction
 - Plasma Detectors, Electronics
- Instrument Acceptance Parameters
 - Extracting the answers

In-situ instrumentation - How

- $E = 1/2*mv^2$
- Determine two quantities from amongst the three above

Electric field force – $q\vec{E}$ Magnetic field force – $q vx\vec{B}$

Requirements driven by mission science. Not all quantities are required to be measured

- Analysers:
 - Electrostatic
 - Magnetic
 - Combinations

Two main types

- Integrating
- Differential

- Integrating
 - RPA
 - Retarding potential analyser
 - Gridded Faraday cup
 - Langmuir probes

- Energy cut-off proportional to applied voltage
- Sweeping voltage samples full energy distribution
- Various geometries
 - Planar, cylindrical, spherical, segmented
- Relatively simple instruments
- Needs high voltages
- Limited detail
- Affected by spacecraft effects

Example

• Rosetta langmuir probe

- Integrating
 RPA
- Differential
 - Planar

- Field perpendicular to particle velocity v
 - Motion in x
 - Motion in y

- Integrating
 RPA
- Differential
 - Planar

- Field perpendicular to particle velocity v
 - Motion in x
 - Motion in y
- y=(1/4)*(q/E)*(V/d)*x²
- $y \alpha x^2$
 - Parabolic path
- y α 1/(E/q)
 - Provides energy dispersion
- Position sensitive detector

- Integrating
 RPA
- Differential
 - Planar

- Low voltage requirement
- Simultaneous electron and ion detection possible
- Dispersion is non-linear
- Used on FONEMA along with magnetic field dispersion

- Integrating
 RPA
- Differential
 - Planar
 - Spherical

Radial field perpendicular
 to particle motion

- Integrating
 RPA
- Differential
 - Planar
 - Spherical

- Radial field perpendicular to particle motion
- Centripetal force mv²/r

•
$$E/q = \Delta V^* r_0 / 2 \Delta r$$

$$-r_0 = (r_1 + r_2)/2$$

- $\Delta \mathbf{r} = \mathbf{r}_2 \mathbf{r}_1$
- $E/q = k^* \Delta V$
- Sweep V to obtain energy distribution
- $r_0/2\Delta r k$ -factor

Various geometries

Quadrispheric

- Integrating
 RPA
- Differential
 - Planar
 - Spherical

- Quadrispheric
- Hemispheric

- Integrating
 RPA
- Differential
 - Planar
 - Spherical

- Quadrispheric
- Hemispheric
- Tri-quadrispheric

- Integrating
 RPA
- Differential
 - Planar
 - Spherical

Giotto Fast Ion Sensor: Tri-quadrispheric

- Integrating
 RPA
- Differential
 - Planar
 - Spherical

- Quadrispheric
- Hemispheric
- Tri-quadrispheric
- Top hat or Symmetric quadrispheric
 - Visit in detail in next section

Top hats: Symmetric quadri-spheric

UCL

- Integrating
 RPA
- Differential
 - Planar
 - Spherical (k-factor)
 - Cylindrical, toroid

- Cylindrical: e.g. INMS on QB50, discussed later
- Toroid: e.g. TIMAS instrument on the Polar satellite discussed later

Axis of rotational

symmetry

Electrostatic Analysers

- Acquiring an energy distribution
 - Voltages stepped to cover the desired range
 - E.g., k-factor 10
 - Data acquired by the detector for desired time period at each step
 - Sampling statistics vs temporal resolution
 - Spacecraft motion: temporal and spatial resolution

Variable GF system

Electrostatic Aperture

Deflection Plates

DISCOVERER Masterclass, Brussels, 28th November, 201&round Calibration Performance

Micro-Channel Plates

 Micro-Channel Plates (MCPs) and Channel Electron Multipliers (CEM)

- Typical CEM gain
 - $-10^{6}-10^{8} e$
 - Independent of incident energy
- Signal read out by a charge sensitive preamplifier and leading edge discriminator
- Counts acquired for fixed acquisition time

In-situ Plasma Measurements

• Design an In-situ Instrument

- Requirement Definition, Geometries and Fields
- In-situ Measurement Techniques
 What and How with Examples
- Instrument Sub-systems: Brief Introduction
 - Plasma Detectors, Electronics
- Instrument Acceptance Parameters
 - Extracting the answers

Near-Earth environment

Near Earth

• No Angular information

DISCOVERER Masterclass, Brussels, 28th November, 2019

UCL

QB50 INMS: Cylindrical Analyser

- Ion and Neutral Mass Spectrometer
- Measure density of dominant species
 O, O₂, N₂, NO
- Spacecraft ram velocity for mass identification
- Cylindrical electrostatic analyser

QB50 INMS: Cylindrical Analyser

- Ions and neutral particles pass through the aperture
- Ion mode: Ion Filter and Ionizer off
- Neutral mode: Ion Filter and Ionizer on
- Analyser selects energy
- Detector counts number of arriving particles

QB50 INMS: Cylindrical Analyser

- Mass identification
 - $E = 0.5 mv^2$
 - Energy from Analyser
 - Velocity from orbital dynamics
 - Energy resolution is critical – discussed in next lecture
 - Why can't this technique be used all the time for mass identification?

Data from Phoenix (Taiwan)

- Satellite in Y-Thomson spin
 - Particles enter aperture when instrument faces spacecraft ram direction measured only
- Data from 16th January 2018
 - Instrument set for O+
 - X-axis Voltage (Energy)
 - Y-axis Time

MSSL, Department of Space and Climate Physics

Velocity measurement

- AtOx in LEO ~ 5eV, due to spacecraft ram velocity
- 40 m/s \Leftrightarrow 0.05 eV dK_e for AtOx in LEO
- Instrument energy resolution 10%
 FWHM ≈ 0.5 eV
- Required resolution <1%
- Measure velocity instead
 Time-of-flight technique

dt (ns)

907.72

973.76

306.88

Energy 36 mm TOF (ns)

5557.29

4649.56

3675.80

4956.45

3.5

5

8

4.4

Time-of-flight

- Electrostatic gating technique
 - Incoming AtOx +ve ion ~5 eV
 - Positive 10V on gate electrode
 - 0V "window" opened for m x 12.5ns

DISCOVERER

- INMS for SOAR
 - Satellite for Orbital Aerodynamics Research
 - Time-of-flight
 - In-flight velocity measurement
 - Needs high resolution position knowledge

DISCOVERER – ROAR and SOAR units

QB50 design

DISCOVERER design

Flow Characterisation Hardware

Time-of-flight and in-flight data

Sources of errors

- Spacecraft pointing knowledge
- Instrument resolutions
- Width of gating window
 - 12.5 ns ⇔ ~20 m/s
 - DISCOVERER measurement goal - 250 m/s
- Detection efficiency
- Ionization efficiency

Somewhere in the TOF/Energy spectrogram is plasma temperature and velocity

In-situ instrumentation

- $E = \frac{1}{2}mv^2$
- Analysers:
 - Electrostatic: energy, angle (Θ, Φ)
- Sufficient for electron and some ion measurements
- Driven by mission science
- For ions, may need species identification
 - Usually done by measuring velocity v

In-situ instrumentation

- Techniques for species identification
 - Energy analysis followed by
 - Velocity selection
 - Mass selection
 - Time of flight velocity measurement
- Former two use magnetic field
 - $-\vec{E} \times \vec{B}$ Wien filter
 - $-\vec{E}/\vec{B}$
 - $-\vec{E}$ followed by \vec{B}

Species identification - ExB

- Velocity selection using a Wien filter.
- Ē x B field
 - -qE Electric field
 - $-q(v \times \overline{B}) magnetic field$

- If
$$qE = q(v \times B)$$
 or $v = E/B$

- Forces are balanced
- Particle trajectory unaffected
- Permanent magnet
 - B is known
- v proportional to E or applied voltage
- Wein filter followed by energy analyser to achieve m/q identification

Species identification - TOF

- Time-of-flight (TOF)
- e.g., Giotto Implanted Ion Sensor
- Electrostatic analyser -Energy
- TOF velocity

Giotto Implanted Ion Sensor

TOF section

- Time of flight technique
 - Record the time a particle takes to "fly" through a known length
 - Passage of particle through a material emits electrons
 - Carbon foils
 - Silicon detectors
 - Two detectors provide fast signals to start and stop a time-to-amplitude converter
 - Charge a capacitor or start and stop a counter

Species Identification – E//B

- Thompson parabolas
- Each curve is energy dispersion of a different mass/q

e.g., Mars 96 mission

FONEMA Analyser

FONEMA instrument

FONEMA

 Back-to-back mirrors and

focal plane detectors to sample large fraction of 4π

Six position sensitive detectors around the "focal image plane" DISCOVERER Masterclass, Brussels, 28th November, 2019

FONEMA

TIMAS

- Toroidal Imaging Mass-Angle Spectrograph
- POLAR mission

Neutral particles

- Giotto NMS
- Describe the different components

Neutral particles

Recapitulate

- In-situ instrumentation
 - Analysers
 - Electrostatic
 - Species identification
 - TOF velocity measurement
 - Velocity selection
 - Mass selection
 - Magnetic
 - Combinations
 - Neutral Particle instrument

Recapitulate

- In-situ instrumentation
 - Principle of operation
 - Energy analysis
 - Mass identification
 - E-M techniques
 - TOF techniques
 - Examples
 - Cylindrical/Top Hat with additional electrodes Energy analysis – INMS, Top-hat
 - GIOTTO TOF analyser Mass identification
 - FONEMA Thompson parabola Mass identification

References

- B. Wilken, Reports on Progress in Physics, Vol 47, p 767-853
- G.Gloeckler, Rev. Sci. Inst. Vol. 61, p3613 3620(1990)
- R.F. Pfaff, J.E. Borovsky and D.T. Young ed., Measurement techniques in Space Plasmas, AGU monograph series, Vol 102
- Solar System Plasma Physics, Geophysical Monograph 54, Ed. J.H.Waite, Jr, J.L.Burch, R.L.Moore
- The Giotto Mission, J.Phys. E, Vol 20 (1987), 795,etc
- Glenn F Knoll, Radiation Detection and Measurement, Publisher John Wiley and Sons, ISBN 0470131489, 9780470131480
- J.L.Wiza, Microchannel Plate detectors, Nuclear Instruments and Methods, Volume 162, Issues 1–3, 1–15 June 1979, Pages 587-601