

Masterclass: DISCOVERER – Why, How and What So Far?

Dr Peter Roberts DISCOVERER Scientific Coordinator and University of Manchester PI

The University of Manchester

The University of Manchester

4th DISCOVERER General Assembly

28th November 2019

"Radically Redesigning Earth Observation Satellites for Commercially Viable Sustained Operation at Significantly Lower Altitudes"

Why **DISCOVERER**? **Satellite Based Earth Observation**

(Euroconsult) Image attributions: Maritime surveillance - geocento.com; Environmental monitoring – Piscini et al, Spectral analysis of Aster and Hyperion data for geological classification of volcano Teide,

2010; Precision agriculture and Civil Protection - NASA; Intelligence - Airbus DS

2015

Why Operate Satellites in Lower? Benefits:

Improved payload performance

- Optical payloads have:
 - Increased resolution or reduced aperture size •
 - Improved radiometric performance
- Radar and communications payloads have:
 - Significantly improved link budgets •
 - Reduced antenna size and transmission power •
 - Reduced latency and improved frequency reuse ٠

Platform benefits

- More benign radiation environment
- Improved launch vehicle payload mass
- End-of-life disposal is enabled
- Reduced space debris collision risk ۰
- Improved geospatial accuracy and reduced pointing requirements

-3] km

Very Low Earth Orbit Satellite Challenges

Residual Atmosphere:

- Increased atmospheric drag
- Increased atomic oxygen erosion
- Aerodynamic attitude and orbit perturbations
- Increased spacecraft charging

New Technologies:

- Materials and Geometries for Drag Reduction and Erosion Resistance
- Drag Compensation
 - Traditional EP
 - Atmosphere Breathing EP
- Aerodynamic Attitude and Orbit Control

Orbit geometry:

- Reduced single satellite coverage
- Increased single satellite revisit time
- Shorter single satellite communications windows with ground stations

Constellation Design

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 737183.

Orbital Aerodynamics 101 – GOCE Example

Screen captures from https://www.youtube.com/wa ?v=n3gB_ZCWkXs

Orbital Aerodynamics 101 – NovaSar (SSTL) as an Example

Image credits: SSTL

wedge

 $J_d/mV \sim 0.1$

Drag could be reduced by an order of magnitude with specularly reflecting materials

[±]UC

Rarefied Orbital Aerodynamics Research (ROAR) Facility

- Reproduces the most reactive component of the atmospheric flow in VLEO, atomic oxygen, at orbital velocity
- Utilises electron stimulated desorption of atomic oxygen from a thin silver membrane to produce atomic oxygen
- Free molecular flow environment limiting impingement from residual gas in a vacuum chamber during operation implies large pumping capability

Rarefied Orbital Aerodynamics Research (ROAR) Facility

- Position controlled ion and neutral mass spectrometers for flow field characterisation
- Able to determine flux, velocity, composition and angular distribution of specularly reemitted flow
- Allow GSI to be characterised for materials
- Currently in build phase

UCL

Rarefied Orbital Aerodynamics Research (ROAR) Facility

GOMSPACE

Satellite for Orbital Aerodynamics Research (SOAR)

- Primary aim: To validate aerodynamic materials performance in the real VLEO environment
- Secondary aim: To validate aerodynamic manoeuvres
- Payloads:
 - Ion and neutral mass spectrometer flow velocity, density, temperature and composition
 - Steerable fins materials exposure and aerodynamic control
- Due for launch in August 2020

GOMSPACE

SOAR Experimental Method

Simplified Experimental Method:

materialsTurning opposing fins at the same incidence

- Sides of fins coated with different candidate

- angle to the flow induces:
- Additional drag changes orbital parameters as measured by the GPS
- Attitude changes measured by ADCS
 - Counter rotated produces roll torque
 - Co rotated produce pitch or yaw
- Combined data gives lift to drag of materials at different angles of incidence
- Validation against ROAR data/measured GSIs

Materials International Space Station Experiment

- Exposing candidate materials to the full space environment
- Launched and returned for full post flight analysis allowing comparison with samples exposed in ROAR.
- Launched 2 November 2019 on NG-12 (Antares/Cygnus to the International Space Station)
- Deployed on MISSE Flight Facility awaiting exposure

Image credit: NASA

Alpha Space owns and operates the MISSE facility under agreements with NASA and the Center for the Advancement of Science in Space (CASIS)

Aerodynamic Attitude and Orbit Control

- **GOM**SPACE Minimising drag typically achieved by minimising the crosssection to the flow
 - Leads to aerostable designs
 - What does aerostable mean?
 - Atmospheric co-rotation
 - Thermospheric winds up to ~500 m/s
 - Density variations
 - Insignificant aerodynamic damping
 - .. all lead to disturbed pointing
 - Requirements for Earth observation
 - Stable pointing during imaging operations
 - Accurate slewing to point to targets of opportunity
 - Body fixed payloads need turn away from the flow
 - .. leads to momentum build up in wheels

Aerodynamic Attitude Control Concepts

Attitude concept	Application
Fixed aerostable	Optical coverage, simple SAR, communications
Aerostable with control (active aerodynamics)	High resolution optical, SAR
Neutrally stable (with or without aerodynamic surfaces)	High agility platforms

Aerostable

Neutrally Stable

Sphere?

Cylinder?

Aerodynamic Attitude Control Approaches

GOMSPACE

Reaction wheels still the best for fine pointing

- Aerodynamic surfaces for coarse pointing control
 - Aerodynamic trim in non-flow aligned orientations
 - Maintaining inertial pointing, pointing to targets of opportunity
 - Momentum management

Reflecting materials benefits:

- Reduced drag penalties associated with aerodynamic control
- Drag based → Lift based
- Roll control becomes possible

The University of Manchester

Atmosphere-Breathing Electric Propulsion (ABEP)

- Use of residual atmosphere as propellant for an electric thruster;
- Intake collects the atmosphere molecules and feeds the thruster;
- Thruster process and accelerate them for thrust generation: compensate the drag!

Atmosphere-Breathing Electric Propulsion (ABEP)

How do we collect the atmospheric particles?

EFD: Intake Advanced design, collection efficiency up to 45%, improvable.

- Let atmospheric particles into the intake;
- Trap them inside by a honey-comb structure of ducts in the front;
- Feed the thruster.

Atmosphere-Breathing Electric Propulsion (ABEP)

- $P_{in} < 5$ kW, ABEP variable mass flow, RF and contact-less \rightarrow eliminate erosion issues;
- High exhaust velocity \rightarrow EM acceleration \rightarrow high ionization degree \rightarrow <u>helicon</u> wave-based plasma;
- Our results $\rightarrow f > 27.12 \text{ MHz}$ better for ignition at low pressure and high $n > 1 \times 10^{17} m^{-3}$;
- Started with a coil antenna \rightarrow at high frequency high reactance $X \rightarrow$ high reflected power;
- Seek for antenna and whole RF circuit optimization.

MANCHESTER 1824

Atmosphere-Breathing Electric Propulsion (ABEP)

Birdcage antenna

- Heritage from MRI machines, operates at resonance frequency, X=0;
- Legs connected at bottom and top by endrings, capacitors in between to match resonance condition;
- At the correct resonance mode, **ExB** field configuration: drift velocity for ions and electrons along same direction.

$$\vec{v}_E = \frac{1}{\vec{B}^2} \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ E_1 & 0 & 0 \\ 0 & B_1 & B_0 \end{vmatrix} = \frac{1}{B_0^2 + B_1^2} \begin{cases} 0 \\ -E_1 B_0 \\ E_1 B_1 \end{cases}$$

The University of Mancheste

Atmosphere-Breathing Electric Propulsion (ABEP)

Inductive Plasma Thruster (IPT):

- Based on birdcage antenna and applied external magnetic field;
- Laboratory model P<1.5 kW, f=40.68 MHz;
- No neutralizer required;
- First ignition of prototype expected 2019.

Injector

RF power input

DISCOVERER Activities

For more information and news: Web: DISCOVERER.space Twitter: @DISCOVERER_EU

