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Environmental Model:
• NRLMSISE-00 environment model [3] 
• Moderate solar and magnetic activity

Satellite Aerodynamics:

𝐶𝐿/𝐶𝐷: Sentman‘s [4] Gas-Surface Interaction (GSI) model
• Diffuse reemission of particles (𝜎 = 𝜎′ = 1)

• Varying degree of energy accommodation (𝛼)

𝛼: Semi-empirical satellite accommodation model (SESAM) [5] 
• 𝑛𝑂 = number density of atomic oxygen 1/m³]
• 𝑇𝑖 = neutral temperature of medium K]

Control phase two: Differential Lift based control of out-of-plane relative motion

Conclusion:
• The proposed control strategy is able to guide the deputy into close proximity of 

the chief despite dynamic variations and perturbations.
• The maneuver time of control phase two is strongly dependent on the 

magnitude of the available differential lift acceleration.
Future work:
• Analysis of the influence of energy accommodation on the maneuver sequence 
 possible benefits from DISCOVERER findings 2].

Control phase one: Differential Drag based control of in-plane relative motion

Motivation:
Satellite Formation Flight (FF):
• Enhanced redundancy, flexibility and robustness
• Renders new scientific missions possible
• Enhanced resolution for EO via synthetic apertures (figure left)

Differential Aerodynamic Forces: 
• Utilization of chemical thrusters has detrimental effects on 

small satellites’ limited mass, volume and power budgets 
• Propellant-less option: Intentionally creating

differential aerodynamic forces between two satellites

Challenges:
• Highly variable control forces: interdependent parameters, 

uncertainties, dynamic variations  Robust control strategies

𝛼 =
𝐸𝐼 − 𝐸𝑅
𝐸𝐼 − 𝐸𝑊

𝛼 =
7.50 × 10−17𝑛𝑂 𝑇𝑖

1.00 + 7.50 × 10−17𝑛𝑂 𝑇𝑖

Maneuver time: 3.41 h

# Panel switches: 24

Fin. rel. position: 
(∆𝑥/∆𝑦/∆𝑧) [m] 

4.8/-1.4/-261

Fin. rel. velocity: 
(∆ ሶ𝑥/∆ ሶ𝑦/∆ ሶ𝑧) [cm/s] 

-0.4/1.08/-1.4

ഥ𝜶 0.913

ഥ𝒂𝒚 [m/s²] 6.89e-5

Maneuver time: 12.06 h

# Panel switches: 17

Fin. rel. position: 
(∆𝑥/∆𝑦/∆𝑧) [m] 

5.3/37.8/0.7

Fin. rel. velocity: 
(∆ ሶ𝑥/∆ ሶ𝑦/∆ ሶ𝑧) [cm/s] 

0.3/-0.1/0.5

ഥ𝜶 [-] 0.913

ഥ𝒂𝒛 [m/s²] 1.4e-5

Parameter: Chief: Deputy:
Mass 10 kg 10 kg
Area ⊥ (body) 0.09 m² 0.09 m²
Area ⊥ (panels) @ 90° AOA 2.2 m² 2.2 m²
Area ⊥ (panels) @   0° AOA 0 m² 0 m²
Area ⊥ (panels) @ 45° AOA 1.556 m² 1.556 m²
S/C wall temperature 300 K 300 K

Parameter: Deputy:

𝑥0/𝑦0/𝑧0 [m] 82.50/-930.46/55.27   

ሶ𝑥0/ ሶ𝑦0/ ሶ𝑧0 m/s] -0.17/-0.04/0.29

Parameter: Chief:
Semi-major axis: 6778.137 km
Eccentricity: 0 °
Inclination: 10 °
RAAN: 45 °
Argument of periapsis: 130 °
True anomaly: 45 °
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Table 1: Initial orbital parameters of the chief spacecraft

Table 2: Initial relative pos. and vel. of the deputy (LVLH)

Table 3: Spacecraft design

𝑉 = 𝒆𝑇𝑷𝒆 𝒆 = 𝒙 − 𝒙𝒅

ሶ𝑉 = 𝒆𝑇 𝑨𝒅
𝑇𝑷 + 𝑷𝑨𝒅 𝒆 + 2𝒆𝑇𝑷 (𝒇 𝒙 − 𝑨𝒅𝒙 + 𝑩𝒖 − 𝑩𝒖𝒅) −𝑸 = 𝑨𝒅

𝑇𝑷 + 𝑷𝑨𝒅

ሶ𝑉 = −𝒆𝑇𝑸𝒆 + 2∆ ∆ = 𝛽ො𝑢 − 𝛿

𝛽 = 𝒆𝑇𝑷𝑩𝑎𝑎𝑒𝑟𝑜

𝛿 = 𝒆𝑇𝑷 (𝑨𝒅𝒙 − 𝒇(𝒙) + 𝑩𝒖𝒅)
ො𝑢 = −𝑠𝑖𝑔𝑛(𝛽)

Robust control approach:
• Lyapunov based DD controller for the in-plane control from Pérez and Bevilacqua 7] (phase one)
• Used for the out-of-plane relative motion control using DL (phase two)

• Tracks the desired trajectory 𝒙𝒅 which is designed by regulating the Schweighardt-Sedwig model [6]
using a Linear-Quadratic Regulator (LQR) (𝑨𝒅 = 𝑨 − 𝑩𝑲)

Lyapunov function: Tracking error:

Time derivative:

Lyapunov equation:

with:
Final control strategy:

ො𝑢 = ቐ
1
0
−1

and:
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Propagator: In-house built, MATLAB® based including:
• Harmonics of Earth’s gravitational potential up to 𝐽6
• Third-body perturbations of Sun and Moon
• Solar-Radiation Pressure 

F10.7(avg) = 140

Ap = 15

Goal: Guide a chaser spacecraft (deputy) within close proximity of a reference spacecraft (chief)

LVLH = local vertical, local horizontal
coordinate system centered at the chief


