Satellite aerodynamics and thermosphere dynamics

investigations with GOCE and Swarm

Eelco Doornbos, TU Delft e.n.doornbos@tudelft.nl (Starting at KNMI in Feb 2019)

Discoverer - 28 November 2018, Munich, Germany

Contents

- Introduction
- Satellite missions and orbits
- Measurement principles and processing algorithms
- Space weather in the thermosphere
- Uncertainty in satellite aerodynamics and the scale of the thermosphere
- GOCE re-entry special dataset
- Conclusions

Satellite missions and orbits

CHAMP

GRACE

Swarm

GRACE Follow-On

Orbit planes of CHAMP, GRACE and GOCE view of the Northern Hemisphere

Measurement principle and processing algorithm

Accelerometer measurement principle

Figures: GFZ-Potsdam / CNES / ONERA

GPS acceleration measurement principle

Isolating aerodynamic accelerations

From aerodynamic accelerations to density and wind

Sentman's exact theory for diffuse reflection of gas particles on a surface

$$C_{\mathrm{D},i,j} = \left[\frac{P_{i,j}}{\sqrt{\pi}} + \gamma_i Q_j Z_{i,j} + \frac{\gamma_i}{2} \frac{v_{\mathrm{re}}}{v_{\mathrm{inc}}} (\gamma_i \sqrt{\pi} Z_{i,j} + P_{i,j}) \right] \frac{A_i}{A_{\mathrm{ref}}}$$

$$C_{\mathrm{L},i,j} = \left[l_i G_j Z_{i,j} + \frac{l_i}{2} \frac{v_{\mathrm{re}}}{v_{\mathrm{inc}}} (\gamma_i \sqrt{\pi} Z_{i,j} + P_{i,j}) \right] \frac{A_i}{A_{\mathrm{ref}}}$$

$$G_j = \frac{1}{2S_j^2}$$
, $P_{i,j} = \frac{1}{S_j} \exp(-\gamma_i^2 S_j^2)$, $Q_j = 1 + G_j$, $Z_{i,j} = 1 + \operatorname{erf}(\gamma_i S_j)$

$$\gamma_i = \cos(\theta_i) = -\hat{u}_{\mathrm{D}} \cdot \hat{n}_i, \quad l_i = -\hat{u}_{\mathrm{L}} \cdot \hat{n}_i$$

$$\frac{v_{\text{re}}}{v_{\text{inc}}} = \sqrt{\frac{1}{2} \left[1 + \alpha \left(\frac{4RT_{\text{w}}}{v_{\text{inc}}^2} - 1 \right) \right]} \qquad S_j = \frac{v_{\text{r}}}{c_{\text{mp},j}} \qquad c_{\text{mp},j} = \sqrt{2 \frac{k}{m_j} T},$$

Figure 3.8 Drag and lift coefficients, according to Sentman's equations for a one-sided flat panel, as a function of the incidence angle θ . The right-hand plot contains the same information as the left-hand plot, but with a scaled Y-axis to more clearly show the lift and values around $\theta \approx 90^{\circ}$.

From aerodynamic accelerations to density and wind

Modeled acceleration (NRLMSISE-00, no wind)
Measured acceleration

Atmosphere velocity: orbit + corotation
Atmosphere velocity: orbit + corotation + crosswind
Crosswind velocity

Detailed satellite geometry models PhD work Gunther March

Fig. 2. Rendering of satellite geometry models designed with CATIA V5 R21.

March, G., Doornbos, E. N., & Visser, P. N. A. M. (2018). High-fidelity geometry models for improving the consistency of CHAMP, GRACE, GOCE and Swarm thermospheric density data sets. Advances in Space Research. http://doi.org/10.1016/j.asr.2018.07.009

Space weather in the thermosphere

2015-03-17 14:23

GOCE anti-sunward wind, quasi-dipole magnetic latitude / magnetic solar time

Uncertainty in satellite aerodynamics and the scale of the thermosphere

Uncertainty in satellite aerodynamics

Energy flux accommodation coefficient

$$\alpha = \frac{T_i - T_r}{T_i - T_w}$$

T temperature

i incoming particles

r reemitted particles

w wall

Doornbos, E. (2012). Thermospheric Density and Wind Determination from Satellite Dynamics. Berlin, Heidelberg: Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-642-25129-0

CHAMP winds between: 2002-01-01, 2005-01-01; $\alpha_{\rm F} = 1.00$

CHAMP winds between: 2002-01-01, 2005-01-01; $\alpha_{\rm F} = 0.60$

What value of the accommodation coefficient to use?

- Further work ongoing by Gunther March, including Swarm manoeuvres, statistics on data from contemporaneous missions, etc.
- Do we need to revisit our (currently very simple) assumptions for the temperatures of the incoming gas and satellite walls?
- What settings to use for GOCE v2.0 thermosphere data in the meantime?
 Perhaps provide two versions of the data?
 - One optimised for continuity of density observations
 - One optimised for improved consistency of horizontal wind observations with external data

GOCE re-entry special dataset

GOCE wind data (patched GPS+ACC)

Equivalent TIE-GCM wind

Figure 88: Evolution of temperatures in the last two days of flight, showing a major increase due to the S/C warm up caused by atmospheric friction, most pronounced for units close to the front of the S/C.

Conclusions

- Computing exact aerodynamic forces and torques on satellites is not a completely solved problem.
- There are strong indications from analysis of CHAMP, GOCE and Swarm density and wind data, that energy accommodation should be lower than previously thought.
- This has implications for the scale of the thermosphere. Thermosphere density is likely lower than indicated by current empirical models.
- For practical purposes (e.g. mission analysis), it is important to use satellite
 aerodynamic models and thermosphere models that are consistent with each other.

Visualisations and animations

- Some of the videos are available on https://vimeo.com/user2446191. Others will be added there when ready.
- Software used:
 - Generic Mapping Tools (GMT) for 2D graphs, and map projections (gmt.soest.hawaii.edu)
 - Blender for 3D rendering (www.blender.org)
 - Apple Motion for compositing and 2D animation (<u>www.apple.com/final-cut-pro/motion/</u>)
 - Python for data (pre)processing