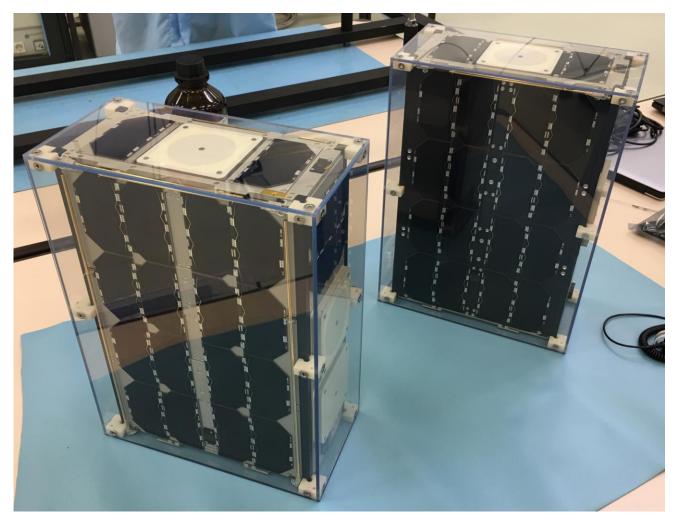


Launch and Early orbit Phase (LEOP)

Leonardo Ghizoni, Victor Jungnell, Kevin Cuevas GomSpace A/S

Munich, 28-30 November 2018

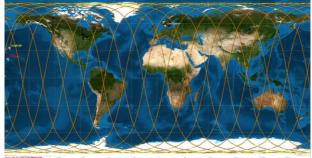


GOMX-4B IOCR

ESTEC, 04.04.2018

Mission Introduction

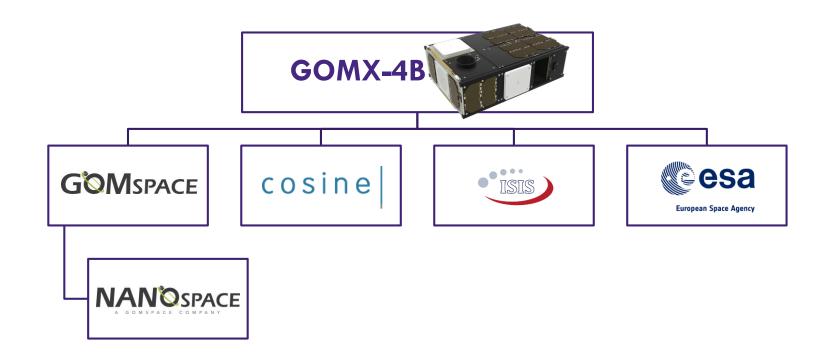
The GOMX-4 mission consists in **two 6U nanosatellites** with different payloads to demonstrate formation flying, Inter-Satellite Link and several advanced experiments.


The satellites are called **GOMX-4A and GOMX-4B** and they both are based on Gomspace 6U platform components.

GOMX-4A is developed for the Danish Defence Adquisition and Logistics Organization (DALO) to monitor the artic region by using ADS-B and AIS data reception, Inter Satellite Communication and the GomSpace Nano- camera.

GOMX-4B is a payload demonstrator satellite founded by the European Space Agency (ESA). The demonstrations planned for GOMX-4B are:

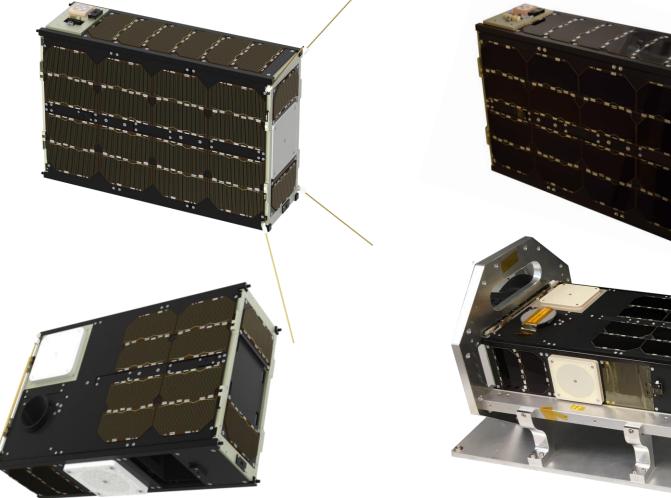
- **Orbit control** capabilities using the NanoSpace 6U propulsion module
- Inter Satellite Communication using the Gomspace SDR platform and active S-band antenna
- Experiments with the miniaturized hyperspectral camera **HyperScout** from Cosine
- Experiments with the **ISIS star-tracker** in relation to pointing accuracy
- With the **Chimera board** from ESA test of commercial computer memories in radiation environment of Space



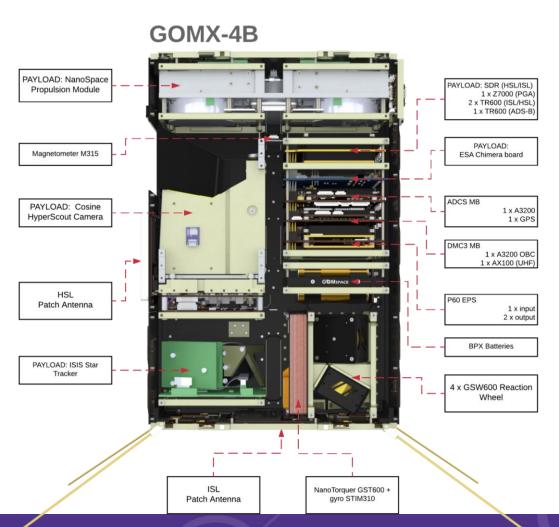
Program organization

Project status and highlights

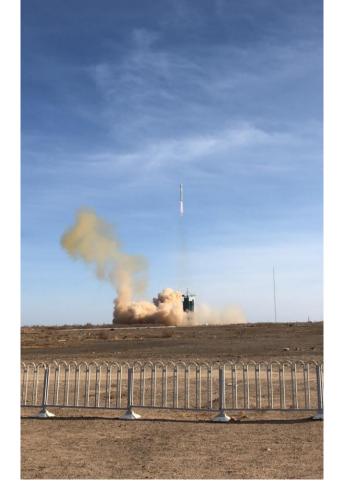
Activity overview:


- Kick off: 8th June 2015
- ➢ PDR: 21st of March 2016
- CDR: 12 of December 2016
- Integration completed: 18th May 2017
- Environmental tests: 19th May 16th June 2017
- > TRR: 11 of May 2017
- ➢ QAR close-out : 6th July 2017
- Launch delay from 15th August 2017 to Q1 2018
- Shipment from GS DK: 11th

System Design implementation



System Design implementation


GOMX-4 Mission Launch

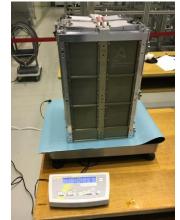
Long March 2D-Y13

- > 02nd February 2018 07:51 GMT
- Insertion parameters:
- Altitude 503 Km (GOMX-4B 320 m lower)

GOMX-4 Mission Launch

10.	Events	事件	Theory time (s)
1	Lift-off	起飞	0, 000
2	Pitch-over	程序转弯	17.000
3	1 st stage ECO	一级发动机关机	155. 293
4	1 st /2 nd stage separation	一、二级分离	156, 493
5	PLF jettison	整流罩分离	186, 493
6	2 rd stage main engine ECO	二级主机关机	330, 133
7	2 rd stage vernier engine ECO	二级游机关机	651.423
8	TC-3/LV Separation	TC-3卫星星箭分离	683. 423
9	The first group of Second payload separation	搭载星1组分离指令	713. 423
10	The second group of Second payload separation	搭载星2组分离指令	741, 423
11	The third group of Second payload separation	搭载星3组分离指令	786. 423

注: t一以一级起飞为零点的总时间,搭载星1组指NewSat4、GOMX-4A;搭载星2组指 NewSat5、GOMX-4B;搭载星3组指FMN-1星、少年星一号。


note: The first group of Second payload separation means NewSat4、 GOMX-4A; The second group of Second payload separation means NewSat5、 GOMX-4B; The third group of Second payload separation means FMN-1、 Shaonian-1。

GOMX-4 Mission Launch

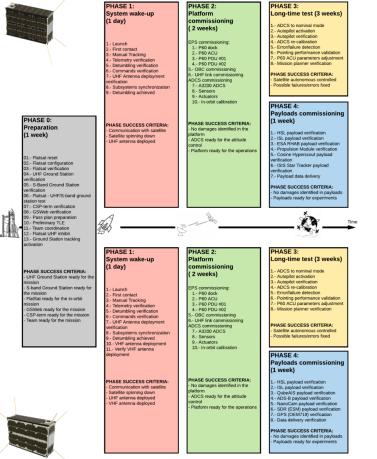
First day of contact

GOMX4 FIRST PASSES PLAN

- 1 GROUND STATION PREPARATION
- 2 ANTENNA PARKING AT AOS AZIMUTH
- 3 DOWNLINK BEACONS RECEIVED
- 4 BEGIN TRACKING OF SATELLITES
- 5 A PING SUCCESSFUL
- 6 B PING SUCCESSFUL
- 7 A CHECK DETUMBLING STATUS
- 8 A CHECK POWER STATUS
- 9 B CHECK DETUMBLING STATUS
- 10 B CHECK POWER STATUS
- 11 A REQUEST HISTORICAL TELEMETRY
- 12 A REQUEST STORING HISTORICAL TELEMETRY
- 13 A RESET GND WATCHDOGS
- 14 A TIMESYNC
- 15 B REQUEST HISTORICAL TELEMETRY
- 16 B REQUEST STORING HISTORICAL TELEMETRY
- 17 B RESET GND WATCHDOGS
- 18 B TIMESYNC
- 19 A CHECK ANTENNA DEPLOYMENT
- 20 B CHECK ANTENNA DEPLOYMENT
- 21 A POWER ON GPS (OEM615)
- 22 B POWER ON GPS (OEM615)

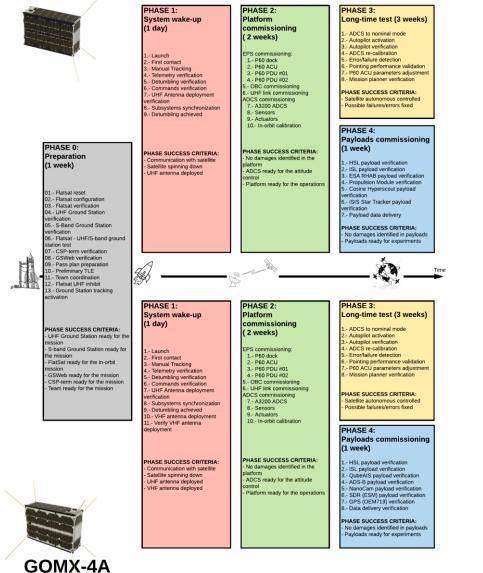
First contact: 02 Feb. 14:09 UTC (+6h 18min)

- Satellite responsive ✓
- Detumbling successfully active ✓
- UHF antenna deployed ✓
- GPS working ✓ Second pass: 02 Feb. 15:15 UTC



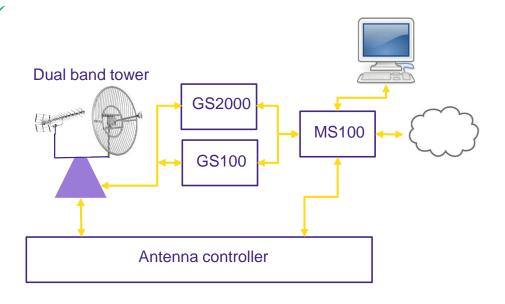
LEOP status overview

GOMX-4B



Phase	Description	Status
PHASE 0	Preparation	Done ✓
PHASE 1	System wake-up	Done ✓
PHASE 2	Platform commissioning	Done ✓
PHASE 3	Long-time test	Done ✓
PHASE 4	Payloads commissioning	Done ✓

GOMX-4B


Ground Station Commissioning

Dual band ground segment covering the UHF and S-band on the same tower

 \succ Test and calibration performed \checkmark

- S-band link performance are slightly better than anticipated related to conservative estimates in the budget calculations
- UHF is reuse from existing ground segment \checkmark

Platform commissioning: UHF radio

UHF RADIO NOMINAL BEHAVIOUR AS EXPECTED ✓

NanoCom AX100 radio:

- Fluid transmission/reception
- >19MB RX data (uplink) ✓
- ➤ >1GB TX data (downlink) ✓
- Temperatures between 7 deg. to 29 deg. (Average 19 deg.)

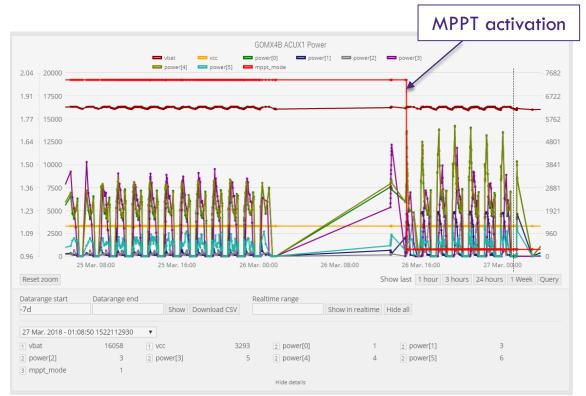
Platform commissioning: OBC

ON-BOARD COMPUTER NOMINAL BEHAVIOUR AS EXPECTED ✓

NanoMind A3200 OBC:

- Nominal on-board processing
- Nominal flash memory activity
- Functional payload features
- Average temperature around 20 degC

Platform commissioning: EPS



Battery pack:


- ➢ Battery Voltage stable ✓
- Battery charge/discharge responding properly
- Output modules:
- Latch Up protection and current limits verified

NANOPOWER P60 IS IN-ORBIT FOR FIRST TIME AND PERFORMING AS EXPECTED ✓

Platform commissioning: EPS ANOMALY: DURING MPPT, UNEXPECTED THE INPUT VOLTAGES

NCR detected

Solar cells in +Y face wrongly connected all in series (8s) instead of 4s2p as the system design.

- MPPT mode activate 20th February 12:27 UTC.
- Input voltage in channels 0 and 4 higher than expected.

GOMX-4B satellite			Syste	m design	Implemented in integration	
ACU(P60) Channel	Panel	Cells	Config.	Input Voltage (V)	Config.	Input Voltage (V)
0	+Y_1	8	4s2p	9.4	8s	18.8
4	+Y_2	8	4s2p	9.4	8s	18.8
3	+χ	6	6s1p	14.1	6s1p	14.1
1	+Z	2	2s1p	4.7	2s1p	4.7
4	-Y_1	4	4s1p	9.4	4s1p	9.4
5	-Y_2	4	4s1p	9.4	4s1p	9.4
5	-X	2	2s1p	4.7	2s1p	4.7
2	-Z	2	2s1p	4.7	2s1p	4.7

Platform commissioning: EPS

IMPACT ANALYSIS AND MITIGATION PLAN FOR THE NCR Impact:

• Input Power lost from 10 up to 20% (around 1 W less average).

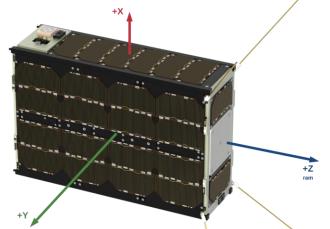
Mitigation:

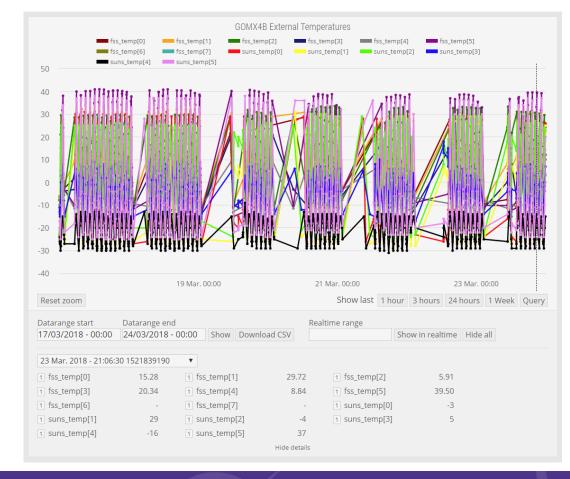
- Voltage charge limit reduced to keep the right safety margins.
- Power budget analysis and control during all mission operations period.

Conclusion:

✓ There is no risk or modification in the mission plan and operations.

Platform commissioning: Temperatures

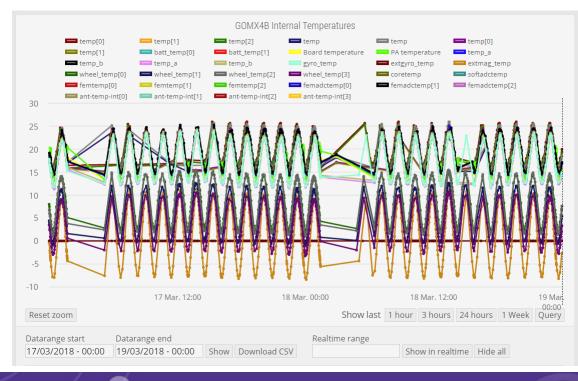



EXTERNAL TEMPERATURES:

➤ External temperatures between -30 deg. and +40 approximately (range -40 deg. to +85 deg.) ✓

Extreme temperatures in CSS in nadir pointing:

- ➤ +X from -27 deg. to +28 deg. ✓
- ➤ +Y from -26 deg. to 31 deg. ✓
- ➤ +Z from -23 deg. to 27 deg. ✓
- > -X from -16 deg. to +9 deg. \checkmark
- ➤ -Y from -29 deg. to -14 deg. ✓
- -Z from -24 deg. to 37 deg.



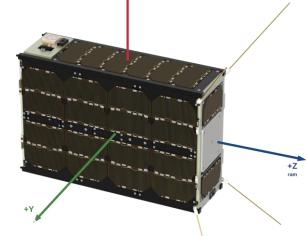
Platform commissioning: Temperatures

INTERNAL TEMPERATURES

➢Internal temp. between -8 deg. and +26 deg. ✓

- \succ All subsystems within their ranges \checkmark
- ≻No historical data using payloads yet.

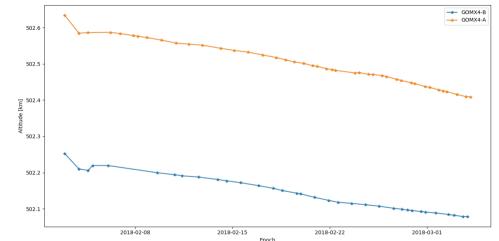
SUBSYSTEM	Limits (degC)	In-orbit temp. (degC)
UHF radio	-30 to +85	+13 to +24 ✓
OBC	-30 to +85	+14 to +25 ✓
Batteries	-5 to +60	+14 to +25 ✓
EPS - Dock	-40 to +85	+14 to +25 ✓
EPS – PDU#01	-40 to +85	+14 to +24 ✓
EPS – PDU#02	-40 to +85	+15 to +26 ✓
EPS – ACU	-40 to +85	+15 to +26 ✓
ADCS A3200	-30 to +85	+11 to +24 ✓
R₩-600	-40 to +80	-3 to +15 ✓
Ext. gyro	-40 to +85	-2 to +18 ✓
Ext magn.	-40 to +85	-8 to +11 ✓


Attitude Control Modes used:

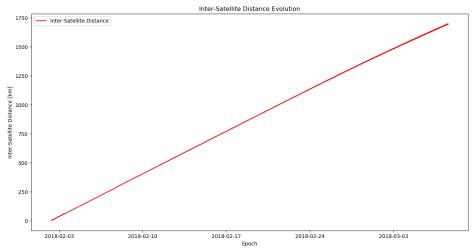
- Detumbling (B-dot controller)
 - Satellites were detumbled at first contact after launch

3-Axis pointing

- Minimum Drag / RAM pointing (+Z ram)
 - Goal: nominal attitude and drag management to slow down the drift between both GOMX-4
- Cosine pointing (+Y canted ram)
 - Goal: optimum attitude for HyperScout picture acquisition
- Ground Station (Aalborg) tracking
 - Goal: perform HSL operations

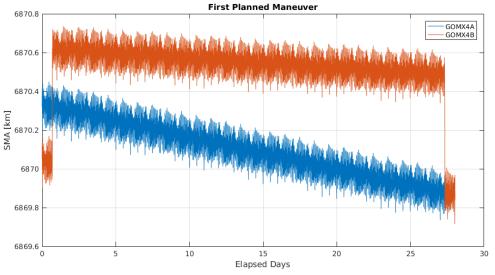

Main achievements:

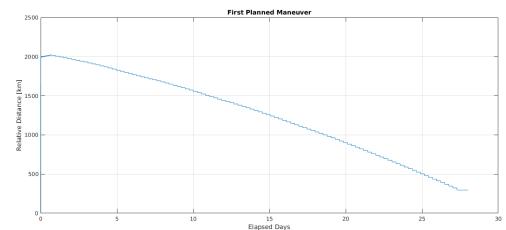
- ➤Satellite detumbled after the launch ✓
- ➢ Performance assessment with On-Ground calibration ✓
- ➤In-Orbit Calibration of ADCS ✓
- ➤Measure pointing accuracy analysis with in-orbit calibration ✓
- ➤ADCS mission modes commissioned ✓
- ➢ Drag management between GOMX-4B and GOMX-4A ✓
- ➢ Propulsion module commissioned ✓
- Propulsion maneuver performed combined with drag management



Altitude Evolution before maneuver:

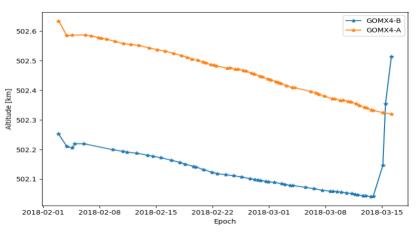
- GOMX-4B was launched around 320 m below GOMX-4A.
- High drift between the satellites.


- Satellites separating with a ratio of 50 Km per day.
- Separation slowly decelerated by drag management but it would take 2-3 months to equal the altitude of satellites.
- Propulsion maneuver required.

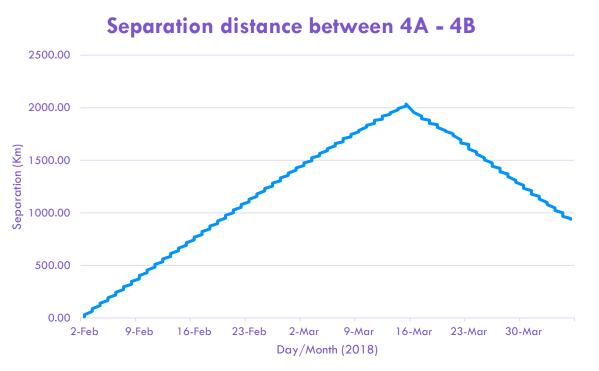


- Reduce the separation up to around 300 Km in less than 1 month.
- Equal the orbit altitude of both satellites.

Maneuver plan:


- Prograde burn for 640 s (10min 40 s).
- GOMX-4B reaches 350 m over GOMX-4A.
- Keep nominal ADCS for 26.1 days.
- Retrograde burn for 671 s (11min 11s).
- Total used propellant: 8.8 g.

Propulsion maneuver:


Peak current consumption:

Current (mA)	5V0	12V
Burn 1	65 🗸	855 🗸
Burn 2	68 🗸	261 🗸
Burn 3	44 🗸	83 🗸
Burn 4	65 🗸	427 ✓
Limit	100	1000

		BURN 1	BURN 2	BURN 3	BURN 4
Epoch start burn UTC		13/mar 14:23	14/Mar 23:00	15/Mar 00:40	15/Mar 22:50
Burn duration		1 min	3 min	3 min	3 min 40 s
Propellant used	[g]	0.392	1.235	1.235	1.509
Burn Time [s]	Thruster 1	85	270	285	371
	Thruster 2	85	210	195	280
	Thruster 3	85	210	220	280
	Thruster 4	90	215	225	240
Total Impulse	Thruster 1	51.7	180	180	220
[mNs]	Thruster 2	60	180	180	220
	Thruster 3	60	180	180	220
	Thruster 4	60	180	180	220
Thrust [µN]	Thruster 1	504-608	607-1078	595-935	563-904
	Thruster 2	681-790	768-1324	882-964	734-1066
	Thruster 3	673-779	771-1244	757-1094	730-1061
	Thruster 4	670-778	760-1208	743-1088	852-1159
Pressure	Thruster 1	818-950	943-1519	931-1342	891-1303
[mbar]	Thruster 2	883-1020	993-1665	1131- 1234	949-1359
	Thruster 3	878-1017	1004-1601	991-1412	949-1368
	Thruster 4	834-968	953-1513	933-1362	1063-1456
	Tank Plenum	889-1079	1016-1754	1007- 1510	963-1441
Temperature	Thruster 1	18-19	16-20	10-21	
[degC]	Thruster 2	15-21	13-23	11-22	
	Thruster 3	14-21	17-20	11-20	
	Thruster 4	14-21	14-22	11-21	
	Tank Plenum	9	14	13-14	
	Tank 1	7-8	12-13	12-13	
	Tank 2	1-4	3-15	3-16	

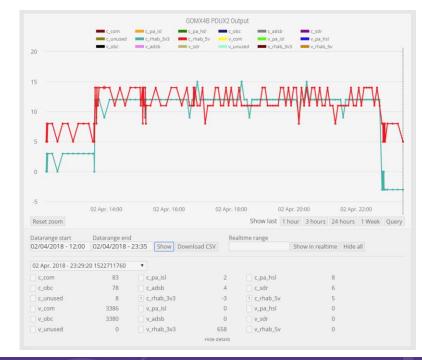
Altitude Evolution after maneuver:

- Around 1000 Km after 18 days
- Propellant consumed 4.27 g
- In-orbit results:
 - Around 1000 Km after 18 days ✓
 - Propellant consumed: 4.371 g ✓

> Retrograde burn scheduled for $9^{th} - 10^{th}$ April 2018.

Payloads commissioning: S-band radio

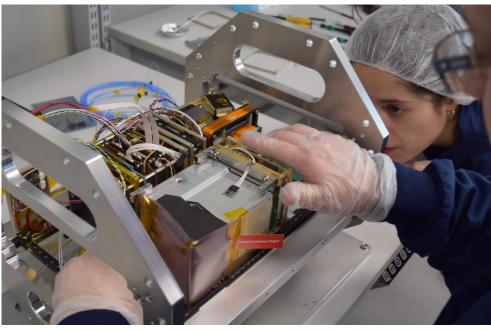
- DISCOVERER
- S-band Radio based on GomSpace NanoCom SDR used for HSL and ISL.
- Radio consumption: peak 1215 mA, nominal 1070 mA ✓
- Expected behavior ✓


Payloads commissioning: Chimera board

- ✓ Status and data files properly transferred to the OBC ✓
- Latch-up events detected and limits under study.
 - □ $3v3: 25/30 \rightarrow 30/40$ (solved) \checkmark
 - □ 5v0: 25/30 → 70/80 (under investigation)

- Commissioned on 10th February for 1 orbit and on 2nd April for 6 orbits.
- Average consumption:
 - ✓ 3v3 line: 12 mA (< 20 mA) ✓</p>
 - ✓ 5v0 line: 14 mA (< 20 mA) ✓</p>

Payloads commissioning: Star Tracker



- Commissioning steps:
 - 1. Health check.
 - 2. Com2 to monitor telemetry during 1 orbit.
 - 3. Com3 to capture an image of stars.
- Current consumption:
 - Nominal 200 mA
 - Peak 300 mA
- ✓ Step 1 successfully performed on 14th March. Current consumption **177 mA** ✓
- ✓ Step 2 (Com2) failed on 19th and 20th March.
 - → SW bug fixed and test successfully repeated on 26th March. Current consumption: 177 mA ✓
- ✓ Step 3 (Com3) successfully performed on 17th March generating the image imgb3.bin of 128.0 KB. Current consumption: 216 mA ✓

Payloads commissioning: HyperScout

 ✓ Health check and image capture above Netherlands performed on 20th March.

DISCOVERER

- ✓ Consumption:
 - 3V3 line: 90 mA (<120 mA) ✓</p>
 - 12V line: 371 mA (<800 mA) ✓
- ✓ Telemetry good ✓
- Image part downloaded smaller than expected

- ✓ Second image capture above Cuba on 26th March ✓
- Consumption:
 - 3V3 line: 87 mA ✓
 - 12V0: 317 mA ✓
- Image pending of downloading and analysis.

LEOP conclusions

Subsystem	Health	Functionality	Performance
EPS (P60)	\checkmark	\checkmark	\checkmark
OBC	\checkmark	\checkmark	\checkmark
UHF radio	\checkmark	\checkmark	\checkmark
ADCS	\checkmark	\checkmark	\checkmark
Propulsion payload	\checkmark	\checkmark	\checkmark
S-band radio (HSL)	\checkmark	\checkmark	\checkmark
ISL payload	\checkmark	\checkmark	(ops)
Chimera payload	\checkmark	\checkmark	(ops)
Star Tracker payload	\checkmark	\checkmark	(ops)
HyperScout payload	\checkmark	\checkmark	(ops)

Mission requirements:

Req. ID	Text	Class.	In-orbit results
M-10	The system shall have an expected lifetime of minimum 7 months.	MIS	→ To be verified at the end of the main operations phase.

UHF TMTC link requirements:

Req. ID	Text	Class.	In-orbit results
S-404	The UHF link shall be able to operate at 2k4, 4k8, 9k6 and 19k2 bps.	PER	 ✓ UHF link successfully stablished at 9k6 download and 4k8 uplink datarates, using all transmission power levels (0, 1 and 2) within this mission. → To be further verified at the end of the main operations phase.

High Speed Link (HSL) requirements:

Req. ID	Text	Class.	In-orbit results
S-800	If present, the HSL shall provide a data rate of at least 500 kBit/s when at an elevation angle of 40° or more with a minimum link margin of 3 dB.	FUN	✓ The HSL has been successfully stablished (margin larger than 3 dB) using a datarate of 1 Mbps up to an elevation lower than 20°.
S-801	If present, the space segment HSL shall use an RF power of no greater than 2W.	FUN	 ✓ The RX power used in the satellite until now it is 0.7 W.

ADCS requirements:

Req. ID	Text	Class.	In-orbit results
S-201	The ADCS shall be able to measure the satellites position to within 30 m (1 sigma).	PER	 ✓ On-board GPS (OEM615) must show an accuracy within 30 m and the new one on-board on GOMX-4A (OEM719) shows same performance. No absolute measurements available to determine exact accuracy.
S-202	The ADCS shall be able to determine its attitude with an AKE of less than 1 deg (1 sigma).	PER	 ✓ In Sun, AKE (1 sigma) is measured as between 0.2 to 1 deg. ★ Average in all orbit, AKE (1 sigma) is measured as between 1.4 to 3.0 deg.
S-203	The ADCS shall be able to track fixed orbit- frame vectors with an APE of less than 1 deg (1 sigma).	PER	✓ APE (1 sigma) is measured as between 0.2 to 0.4 deg.
S-204	The ADCS shall be able to provide pointing stability with an RPE of less than 1000 arc-second over a 30 sec window.	FUN	→ Pending to be analyzed.
S-205	The ADCS shall be able to detumble the satellite from 180 deg/s to less than 1 deg/s within 1 week.	PER	✓ Satellite spin lower than 1 deg/s after 2 days in- orbit.
S-206	The ADCS shall be able to automatically transition between detumbling and pointing modes.	FUN	 ✓ Automatic ADCS transition modes implemented and working in the flight satellite.

Propulsion module requirements:

Req. ID	Text	Class.	In-orbit results
S-024	The propulsion module shall generate a torque no greater than 0.2 mNm during maximum thrust firings.	РНҮ	✓ The propulsion system at 4 mN thrust generated 34 uNn torque in the satellite.
S-502	The propulsion system shall have a specific impulse of at least 57 seconds.	PER	 ✓ Specific impulse in the propulsion maneuver measured as 61 s.
S-505	The propulsion system shall provide at least 4 mN of total thrust.	PER	 ✓ The 3 burns executed for the maneuver provided a total thrust larger than 4 Nm.
S-507	Each thruster of the propulsion system shall be capable of throttling in the 0.5 mN - 1 mN range.	FUN	 ✓ All 4 thursters presented a thrust between 0.5 mN (thruster 1) and 1.2 mN (thruster 3).
S-512	The propulsion system shall be able to perform thruster firing for at least 300 seconds per burn event.	PER	 ✓ Currently, the maximum firing perform is 200 seconds in total where the thruster 1 took 371 s. → To be further verified at the end of the main operations phase.
S-515	The thrust vector shall maintain a mean error angle of 1 degree or less over a 300 second period.	FUN	→ Pending to be analyzed.

Inter-Satellite Link (ISL) requirements:

Req. ID	Text	Class.	In-orbit results
S-601	The ISL system shall be capable of a data rate of at least 9.6 kbit/s at 1500 km separation from the target with a link margin of at least 3 dB.	FUN	 ✓ Payload commissioning performed at 750 Km of separation distance stablishing successfully the link at 102 kbps using 0.7 W transmission power. → To be verified at the end of the main operations phase.
S-603	The ISL system shall retain a link margin of at least 3 dB given a separation distance of up to 4500 km with a minimum bitrate of 1.2 kbit/s.	FUN	→ To be verified at the end of the main operations phase.

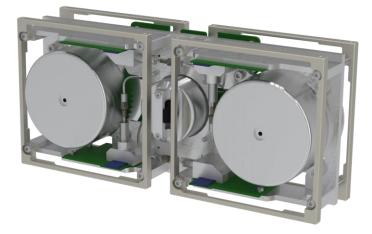
Chimera payload requirements:

Req. ID	Text	Class.	In-orbit results
S-1000	The ESA Chimera RHAB payload shall have an average power consumption of 0.5 W or less.	FUN	 ✓ Chimera payload consumes 0.12 W in average during nominal operations. ✗ Latch-up event detected in the 5V output line consuming higher than 0.5W of power peak during the power on.
S-1001	The ESA Chimera RHAB shall generate no more than 10 kB of data per day.	FUN	 ✓ Chimera payload transmits a data package of 91 bytes every 15 minutes as it was expected.

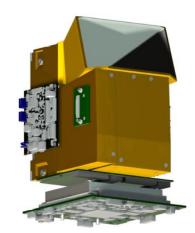
Star Tracker payload requirements:

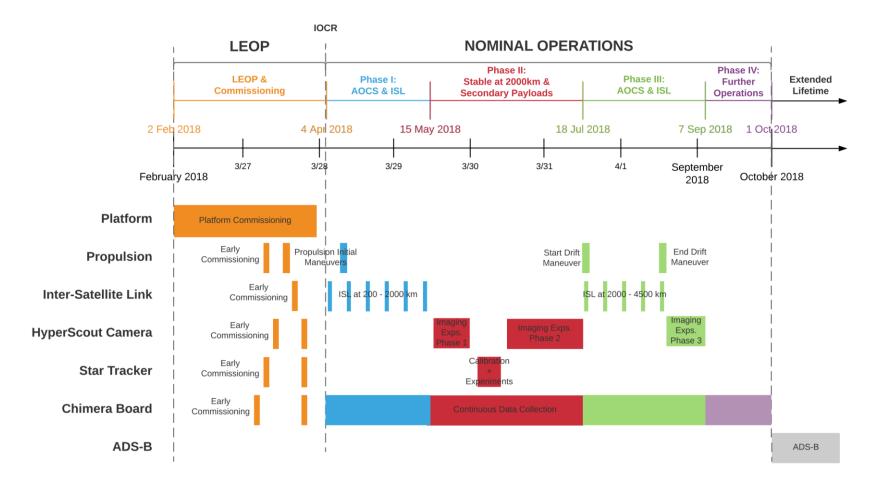
Req. ID	Text	Class.	In-orbit results
S-1205	The ISIS Star Tracker shall use 3V3 with 0.3 A as peak current	FUN	 ✓ Maximum current consumption of the star tracker payload measured as 0.22 A.
S-1209	The ISIS Star Tracker shall consume 1 W or less.	FUN	 ✓ Maximum power consumption of the star tracker payload measured as 0.73 W.
S-1213	The ISIS Star Tracker shall limit the data to be transmitted to Ground at 800 KB or less	FUN	 ✓ During the early commissioning the test cases 1, 2 and 3 generated data results of 35 KB, 7 KB and 150 KB respectively. → To be further verified at the end of the main operations phase.
S-1214	The ISIS Star Tracker shall limit the data to be uplink at 100 KB or less	FUN	 ✓ During the early commissioning a total of 0.9 KB was uploaded: four scrips of 80 bytes, 623 bytes and 72 bytes to execute the test cases 1, 2 and 3 respectively plus a common gscript of 150 bytes. → To be further verified at the end of the main operations phase.

HyperScout payload requirements:



Req. ID	Text	Class.	In-orbit results
S-1107	The Cosine HyperScout shall be activated for commissioning purposes within the first 3 months of mission lifetime for a limited time of 5 orbits.	MIS	 ✓ The HyperScout payload performed its commissioning in around 4 orbits (6 hours). ✗ The commissioning was performed twice to capture photo above Scotland and Cuba in two different slots of time.
S-1108	The Cosine HyperScout commissioning shall be constraint for a maximum generation data to transmit of 10 KB and a maximum energy consumption of 3000 J per orbit	FUN	 ★ The data results to download was a total of 1.3 MB and 2 MB of data for the first and second commissioning operations respectively. ✓ The total energy consumption of the payload during the commissioning is 7610 J split in 3V3 87mA@3V3 during 6h and 326mA@12V during 6 minutes.
S-1110	The Cosine HyperScout shall use 3V3 and 12V0 of power lines with a maximum current limitation of 1 A and 2 A respectively.	FUN	 ✓ Maximum current consumption measured as 0.09 A and 0.37 A for the HyperScout payload in the 3V3 and 12V0 output lines respectively.
S-1113	The HyperScout data shall be split in packages of 10 KB as maximum in order to minimize the data losses for possible transmission interruptions.	FUN	★ The packages for the image were split in files of around 270 KB. The transmission was successful and this deviation is acceptable.
S-1118	The Cosine HyperScout payload shall implement RS422 as the data interface to transmit the payload data to the NanoMind Z7000 with a maximum data rate up to 1 MB.	FUN	 ★ The 2 MB data took around 5 minutes to be transferred from HyperScout ICU to the Z700 in the SDR. → To be further verified at the end of the main operations phase.


Individual AOCS/payloads presentations



Mission Operations Plan

GOMX-4B OPERATIONS

Thank You!

